Metamath Proof Explorer


Theorem rpexp

Description: If two numbers A and B are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014)

Ref Expression
Assertion rpexp ABNANgcdB=1AgcdB=1

Proof

Step Hyp Ref Expression
1 0exp N0N=0
2 1 oveq1d N0Ngcd0=0gcd0
3 2 eqeq1d N0Ngcd0=10gcd0=1
4 oveq1 A=0AN=0N
5 oveq12 AN=0NB=0ANgcdB=0Ngcd0
6 4 5 sylan A=0B=0ANgcdB=0Ngcd0
7 6 eqeq1d A=0B=0ANgcdB=10Ngcd0=1
8 oveq12 A=0B=0AgcdB=0gcd0
9 8 eqeq1d A=0B=0AgcdB=10gcd0=1
10 7 9 bibi12d A=0B=0ANgcdB=1AgcdB=10Ngcd0=10gcd0=1
11 3 10 syl5ibrcom NA=0B=0ANgcdB=1AgcdB=1
12 11 3ad2ant3 ABNA=0B=0ANgcdB=1AgcdB=1
13 exprmfct ANgcdB2ppANgcdB
14 simpl1 ABN¬A=0B=0A
15 simpl3 ABN¬A=0B=0N
16 15 nnnn0d ABN¬A=0B=0N0
17 zexpcl AN0AN
18 14 16 17 syl2anc ABN¬A=0B=0AN
19 18 adantr ABN¬A=0B=0pAN
20 simpl2 ABN¬A=0B=0B
21 20 adantr ABN¬A=0B=0pB
22 gcddvds ANBANgcdBANANgcdBB
23 19 21 22 syl2anc ABN¬A=0B=0pANgcdBANANgcdBB
24 23 simpld ABN¬A=0B=0pANgcdBAN
25 prmz pp
26 25 adantl ABN¬A=0B=0pp
27 simpr ABN¬A=0B=0¬A=0B=0
28 14 zcnd ABN¬A=0B=0A
29 expeq0 ANAN=0A=0
30 28 15 29 syl2anc ABN¬A=0B=0AN=0A=0
31 30 anbi1d ABN¬A=0B=0AN=0B=0A=0B=0
32 27 31 mtbird ABN¬A=0B=0¬AN=0B=0
33 gcdn0cl ANB¬AN=0B=0ANgcdB
34 18 20 32 33 syl21anc ABN¬A=0B=0ANgcdB
35 34 nnzd ABN¬A=0B=0ANgcdB
36 35 adantr ABN¬A=0B=0pANgcdB
37 dvdstr pANgcdBANpANgcdBANgcdBANpAN
38 26 36 19 37 syl3anc ABN¬A=0B=0ppANgcdBANgcdBANpAN
39 24 38 mpan2d ABN¬A=0B=0ppANgcdBpAN
40 simpr ABN¬A=0B=0pp
41 simpll1 ABN¬A=0B=0pA
42 15 adantr ABN¬A=0B=0pN
43 prmdvdsexp pANpANpA
44 40 41 42 43 syl3anc ABN¬A=0B=0ppANpA
45 39 44 sylibd ABN¬A=0B=0ppANgcdBpA
46 23 simprd ABN¬A=0B=0pANgcdBB
47 dvdstr pANgcdBBpANgcdBANgcdBBpB
48 26 36 21 47 syl3anc ABN¬A=0B=0ppANgcdBANgcdBBpB
49 46 48 mpan2d ABN¬A=0B=0ppANgcdBpB
50 45 49 jcad ABN¬A=0B=0ppANgcdBpApB
51 dvdsgcd pABpApBpAgcdB
52 26 41 21 51 syl3anc ABN¬A=0B=0ppApBpAgcdB
53 nprmdvds1 p¬p1
54 breq2 AgcdB=1pAgcdBp1
55 54 notbid AgcdB=1¬pAgcdB¬p1
56 53 55 syl5ibrcom pAgcdB=1¬pAgcdB
57 56 necon2ad ppAgcdBAgcdB1
58 57 adantl ABN¬A=0B=0ppAgcdBAgcdB1
59 50 52 58 3syld ABN¬A=0B=0ppANgcdBAgcdB1
60 59 rexlimdva ABN¬A=0B=0ppANgcdBAgcdB1
61 gcdn0cl AB¬A=0B=0AgcdB
62 61 3adantl3 ABN¬A=0B=0AgcdB
63 eluz2b3 AgcdB2AgcdBAgcdB1
64 63 baib AgcdBAgcdB2AgcdB1
65 62 64 syl ABN¬A=0B=0AgcdB2AgcdB1
66 60 65 sylibrd ABN¬A=0B=0ppANgcdBAgcdB2
67 13 66 syl5 ABN¬A=0B=0ANgcdB2AgcdB2
68 exprmfct AgcdB2ppAgcdB
69 62 nnzd ABN¬A=0B=0AgcdB
70 69 adantr ABN¬A=0B=0pAgcdB
71 gcddvds ABAgcdBAAgcdBB
72 41 21 71 syl2anc ABN¬A=0B=0pAgcdBAAgcdBB
73 72 simpld ABN¬A=0B=0pAgcdBA
74 iddvdsexp ANAAN
75 41 42 74 syl2anc ABN¬A=0B=0pAAN
76 70 41 19 73 75 dvdstrd ABN¬A=0B=0pAgcdBAN
77 dvdstr pAgcdBANpAgcdBAgcdBANpAN
78 26 70 19 77 syl3anc ABN¬A=0B=0ppAgcdBAgcdBANpAN
79 76 78 mpan2d ABN¬A=0B=0ppAgcdBpAN
80 72 simprd ABN¬A=0B=0pAgcdBB
81 dvdstr pAgcdBBpAgcdBAgcdBBpB
82 26 70 21 81 syl3anc ABN¬A=0B=0ppAgcdBAgcdBBpB
83 80 82 mpan2d ABN¬A=0B=0ppAgcdBpB
84 79 83 jcad ABN¬A=0B=0ppAgcdBpANpB
85 dvdsgcd pANBpANpBpANgcdB
86 26 19 21 85 syl3anc ABN¬A=0B=0ppANpBpANgcdB
87 breq2 ANgcdB=1pANgcdBp1
88 87 notbid ANgcdB=1¬pANgcdB¬p1
89 53 88 syl5ibrcom pANgcdB=1¬pANgcdB
90 89 necon2ad ppANgcdBANgcdB1
91 90 adantl ABN¬A=0B=0ppANgcdBANgcdB1
92 84 86 91 3syld ABN¬A=0B=0ppAgcdBANgcdB1
93 92 rexlimdva ABN¬A=0B=0ppAgcdBANgcdB1
94 eluz2b3 ANgcdB2ANgcdBANgcdB1
95 94 baib ANgcdBANgcdB2ANgcdB1
96 34 95 syl ABN¬A=0B=0ANgcdB2ANgcdB1
97 93 96 sylibrd ABN¬A=0B=0ppAgcdBANgcdB2
98 68 97 syl5 ABN¬A=0B=0AgcdB2ANgcdB2
99 67 98 impbid ABN¬A=0B=0ANgcdB2AgcdB2
100 99 96 65 3bitr3d ABN¬A=0B=0ANgcdB1AgcdB1
101 100 necon4bid ABN¬A=0B=0ANgcdB=1AgcdB=1
102 101 ex ABN¬A=0B=0ANgcdB=1AgcdB=1
103 12 102 pm2.61d ABNANgcdB=1AgcdB=1