Metamath Proof Explorer


Theorem rrgsupp

Description: Left multiplication by a left regular element does not change the support set of a vector. (Contributed by Stefan O'Rear, 28-Mar-2015) (Revised by AV, 20-Jul-2019)

Ref Expression
Hypotheses rrgval.e E=RLRegR
rrgval.b B=BaseR
rrgval.t ·˙=R
rrgval.z 0˙=0R
rrgsupp.i φIV
rrgsupp.r φRRing
rrgsupp.x φXE
rrgsupp.y φY:IB
Assertion rrgsupp φI×X·˙fYsupp0˙=Ysupp0˙

Proof

Step Hyp Ref Expression
1 rrgval.e E=RLRegR
2 rrgval.b B=BaseR
3 rrgval.t ·˙=R
4 rrgval.z 0˙=0R
5 rrgsupp.i φIV
6 rrgsupp.r φRRing
7 rrgsupp.x φXE
8 rrgsupp.y φY:IB
9 7 adantr φyIXE
10 fvexd φyIYyV
11 fconstmpt I×X=yIX
12 11 a1i φI×X=yIX
13 8 feqmptd φY=yIYy
14 5 9 10 12 13 offval2 φI×X·˙fY=yIX·˙Yy
15 14 adantr φxII×X·˙fY=yIX·˙Yy
16 15 fveq1d φxII×X·˙fYx=yIX·˙Yyx
17 simpr φxIxI
18 ovex X·˙YxV
19 fveq2 y=xYy=Yx
20 19 oveq2d y=xX·˙Yy=X·˙Yx
21 eqid yIX·˙Yy=yIX·˙Yy
22 20 21 fvmptg xIX·˙YxVyIX·˙Yyx=X·˙Yx
23 17 18 22 sylancl φxIyIX·˙Yyx=X·˙Yx
24 16 23 eqtrd φxII×X·˙fYx=X·˙Yx
25 24 neeq1d φxII×X·˙fYx0˙X·˙Yx0˙
26 25 rabbidva φxI|I×X·˙fYx0˙=xI|X·˙Yx0˙
27 6 adantr φxIRRing
28 7 adantr φxIXE
29 8 ffvelcdmda φxIYxB
30 1 2 3 4 rrgeq0 RRingXEYxBX·˙Yx=0˙Yx=0˙
31 27 28 29 30 syl3anc φxIX·˙Yx=0˙Yx=0˙
32 31 necon3bid φxIX·˙Yx0˙Yx0˙
33 32 rabbidva φxI|X·˙Yx0˙=xI|Yx0˙
34 26 33 eqtrd φxI|I×X·˙fYx0˙=xI|Yx0˙
35 ovex X·˙YyV
36 35 21 fnmpti yIX·˙YyFnI
37 fneq1 I×X·˙fY=yIX·˙YyI×X·˙fYFnIyIX·˙YyFnI
38 36 37 mpbiri I×X·˙fY=yIX·˙YyI×X·˙fYFnI
39 14 38 syl φI×X·˙fYFnI
40 4 fvexi 0˙V
41 40 a1i φ0˙V
42 suppvalfn I×X·˙fYFnIIV0˙VI×X·˙fYsupp0˙=xI|I×X·˙fYx0˙
43 39 5 41 42 syl3anc φI×X·˙fYsupp0˙=xI|I×X·˙fYx0˙
44 8 ffnd φYFnI
45 suppvalfn YFnIIV0˙VYsupp0˙=xI|Yx0˙
46 44 5 41 45 syl3anc φYsupp0˙=xI|Yx0˙
47 34 43 46 3eqtr4d φI×X·˙fYsupp0˙=Ysupp0˙