Metamath Proof Explorer


Theorem ruclem1

Description: Lemma for ruc (the reals are uncountable). Substitutions for the function D . (Contributed by Mario Carneiro, 28-May-2014) (Revised by Fan Zheng, 6-Jun-2016)

Ref Expression
Hypotheses ruc.1 φF:
ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
ruclem1.3 φA
ruclem1.4 φB
ruclem1.5 φM
ruclem1.6 X=1stABDM
ruclem1.7 Y=2ndABDM
Assertion ruclem1 φABDM2X=ifA+B2<MAA+B2+B2Y=ifA+B2<MA+B2B

Proof

Step Hyp Ref Expression
1 ruc.1 φF:
2 ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
3 ruclem1.3 φA
4 ruclem1.4 φB
5 ruclem1.5 φM
6 ruclem1.6 X=1stABDM
7 ruclem1.7 Y=2ndABDM
8 2 oveqd φABDM=ABx2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndxM
9 3 4 opelxpd φAB2
10 simpr x=ABy=My=M
11 10 breq2d x=ABy=Mm<ym<M
12 simpl x=ABy=Mx=AB
13 12 fveq2d x=ABy=M1stx=1stAB
14 13 opeq1d x=ABy=M1stxm=1stABm
15 12 fveq2d x=ABy=M2ndx=2ndAB
16 15 oveq2d x=ABy=Mm+2ndx=m+2ndAB
17 16 oveq1d x=ABy=Mm+2ndx2=m+2ndAB2
18 17 15 opeq12d x=ABy=Mm+2ndx22ndx=m+2ndAB22ndAB
19 11 14 18 ifbieq12d x=ABy=Mifm<y1stxmm+2ndx22ndx=ifm<M1stABmm+2ndAB22ndAB
20 19 csbeq2dv x=ABy=M1stx+2ndx2/mifm<y1stxmm+2ndx22ndx=1stx+2ndx2/mifm<M1stABmm+2ndAB22ndAB
21 13 15 oveq12d x=ABy=M1stx+2ndx=1stAB+2ndAB
22 21 oveq1d x=ABy=M1stx+2ndx2=1stAB+2ndAB2
23 22 csbeq1d x=ABy=M1stx+2ndx2/mifm<M1stABmm+2ndAB22ndAB=1stAB+2ndAB2/mifm<M1stABmm+2ndAB22ndAB
24 20 23 eqtrd x=ABy=M1stx+2ndx2/mifm<y1stxmm+2ndx22ndx=1stAB+2ndAB2/mifm<M1stABmm+2ndAB22ndAB
25 eqid x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
26 opex 1stABmV
27 opex m+2ndAB22ndABV
28 26 27 ifex ifm<M1stABmm+2ndAB22ndABV
29 28 csbex 1stAB+2ndAB2/mifm<M1stABmm+2ndAB22ndABV
30 24 25 29 ovmpoa AB2MABx2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndxM=1stAB+2ndAB2/mifm<M1stABmm+2ndAB22ndAB
31 9 5 30 syl2anc φABx2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndxM=1stAB+2ndAB2/mifm<M1stABmm+2ndAB22ndAB
32 8 31 eqtrd φABDM=1stAB+2ndAB2/mifm<M1stABmm+2ndAB22ndAB
33 op1stg AB1stAB=A
34 3 4 33 syl2anc φ1stAB=A
35 op2ndg AB2ndAB=B
36 3 4 35 syl2anc φ2ndAB=B
37 34 36 oveq12d φ1stAB+2ndAB=A+B
38 37 oveq1d φ1stAB+2ndAB2=A+B2
39 38 csbeq1d φ1stAB+2ndAB2/mifm<M1stABmm+2ndAB22ndAB=A+B2/mifm<M1stABmm+2ndAB22ndAB
40 ovex A+B2V
41 breq1 m=A+B2m<MA+B2<M
42 opeq2 m=A+B21stABm=1stABA+B2
43 oveq1 m=A+B2m+2ndAB=A+B2+2ndAB
44 43 oveq1d m=A+B2m+2ndAB2=A+B2+2ndAB2
45 44 opeq1d m=A+B2m+2ndAB22ndAB=A+B2+2ndAB22ndAB
46 41 42 45 ifbieq12d m=A+B2ifm<M1stABmm+2ndAB22ndAB=ifA+B2<M1stABA+B2A+B2+2ndAB22ndAB
47 40 46 csbie A+B2/mifm<M1stABmm+2ndAB22ndAB=ifA+B2<M1stABA+B2A+B2+2ndAB22ndAB
48 34 opeq1d φ1stABA+B2=AA+B2
49 36 oveq2d φA+B2+2ndAB=A+B2+B
50 49 oveq1d φA+B2+2ndAB2=A+B2+B2
51 50 36 opeq12d φA+B2+2ndAB22ndAB=A+B2+B2B
52 48 51 ifeq12d φifA+B2<M1stABA+B2A+B2+2ndAB22ndAB=ifA+B2<MAA+B2A+B2+B2B
53 47 52 eqtrid φA+B2/mifm<M1stABmm+2ndAB22ndAB=ifA+B2<MAA+B2A+B2+B2B
54 39 53 eqtrd φ1stAB+2ndAB2/mifm<M1stABmm+2ndAB22ndAB=ifA+B2<MAA+B2A+B2+B2B
55 32 54 eqtrd φABDM=ifA+B2<MAA+B2A+B2+B2B
56 3 4 readdcld φA+B
57 56 rehalfcld φA+B2
58 3 57 opelxpd φAA+B22
59 57 4 readdcld φA+B2+B
60 59 rehalfcld φA+B2+B2
61 60 4 opelxpd φA+B2+B2B2
62 58 61 ifcld φifA+B2<MAA+B2A+B2+B2B2
63 55 62 eqeltrd φABDM2
64 55 fveq2d φ1stABDM=1stifA+B2<MAA+B2A+B2+B2B
65 fvif 1stifA+B2<MAA+B2A+B2+B2B=ifA+B2<M1stAA+B21stA+B2+B2B
66 op1stg AA+B2V1stAA+B2=A
67 3 40 66 sylancl φ1stAA+B2=A
68 ovex A+B2+B2V
69 op1stg A+B2+B2VB1stA+B2+B2B=A+B2+B2
70 68 4 69 sylancr φ1stA+B2+B2B=A+B2+B2
71 67 70 ifeq12d φifA+B2<M1stAA+B21stA+B2+B2B=ifA+B2<MAA+B2+B2
72 65 71 eqtrid φ1stifA+B2<MAA+B2A+B2+B2B=ifA+B2<MAA+B2+B2
73 64 72 eqtrd φ1stABDM=ifA+B2<MAA+B2+B2
74 6 73 eqtrid φX=ifA+B2<MAA+B2+B2
75 55 fveq2d φ2ndABDM=2ndifA+B2<MAA+B2A+B2+B2B
76 fvif 2ndifA+B2<MAA+B2A+B2+B2B=ifA+B2<M2ndAA+B22ndA+B2+B2B
77 op2ndg AA+B2V2ndAA+B2=A+B2
78 3 40 77 sylancl φ2ndAA+B2=A+B2
79 op2ndg A+B2+B2VB2ndA+B2+B2B=B
80 68 4 79 sylancr φ2ndA+B2+B2B=B
81 78 80 ifeq12d φifA+B2<M2ndAA+B22ndA+B2+B2B=ifA+B2<MA+B2B
82 76 81 eqtrid φ2ndifA+B2<MAA+B2A+B2+B2B=ifA+B2<MA+B2B
83 75 82 eqtrd φ2ndABDM=ifA+B2<MA+B2B
84 7 83 eqtrid φY=ifA+B2<MA+B2B
85 63 74 84 3jca φABDM2X=ifA+B2<MAA+B2+B2Y=ifA+B2<MA+B2B