| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ruc.1 |
|
| 2 |
|
ruc.2 |
|
| 3 |
|
ruclem1.3 |
|
| 4 |
|
ruclem1.4 |
|
| 5 |
|
ruclem1.5 |
|
| 6 |
|
ruclem1.6 |
|
| 7 |
|
ruclem1.7 |
|
| 8 |
2
|
oveqd |
|
| 9 |
3 4
|
opelxpd |
|
| 10 |
|
simpr |
|
| 11 |
10
|
breq2d |
|
| 12 |
|
simpl |
|
| 13 |
12
|
fveq2d |
|
| 14 |
13
|
opeq1d |
|
| 15 |
12
|
fveq2d |
|
| 16 |
15
|
oveq2d |
|
| 17 |
16
|
oveq1d |
|
| 18 |
17 15
|
opeq12d |
|
| 19 |
11 14 18
|
ifbieq12d |
|
| 20 |
19
|
csbeq2dv |
|
| 21 |
13 15
|
oveq12d |
|
| 22 |
21
|
oveq1d |
|
| 23 |
22
|
csbeq1d |
|
| 24 |
20 23
|
eqtrd |
|
| 25 |
|
eqid |
|
| 26 |
|
opex |
|
| 27 |
|
opex |
|
| 28 |
26 27
|
ifex |
|
| 29 |
28
|
csbex |
|
| 30 |
24 25 29
|
ovmpoa |
|
| 31 |
9 5 30
|
syl2anc |
|
| 32 |
8 31
|
eqtrd |
|
| 33 |
|
op1stg |
|
| 34 |
3 4 33
|
syl2anc |
|
| 35 |
|
op2ndg |
|
| 36 |
3 4 35
|
syl2anc |
|
| 37 |
34 36
|
oveq12d |
|
| 38 |
37
|
oveq1d |
|
| 39 |
38
|
csbeq1d |
|
| 40 |
|
ovex |
|
| 41 |
|
breq1 |
|
| 42 |
|
opeq2 |
|
| 43 |
|
oveq1 |
|
| 44 |
43
|
oveq1d |
|
| 45 |
44
|
opeq1d |
|
| 46 |
41 42 45
|
ifbieq12d |
|
| 47 |
40 46
|
csbie |
|
| 48 |
34
|
opeq1d |
|
| 49 |
36
|
oveq2d |
|
| 50 |
49
|
oveq1d |
|
| 51 |
50 36
|
opeq12d |
|
| 52 |
48 51
|
ifeq12d |
|
| 53 |
47 52
|
eqtrid |
|
| 54 |
39 53
|
eqtrd |
|
| 55 |
32 54
|
eqtrd |
|
| 56 |
3 4
|
readdcld |
|
| 57 |
56
|
rehalfcld |
|
| 58 |
3 57
|
opelxpd |
|
| 59 |
57 4
|
readdcld |
|
| 60 |
59
|
rehalfcld |
|
| 61 |
60 4
|
opelxpd |
|
| 62 |
58 61
|
ifcld |
|
| 63 |
55 62
|
eqeltrd |
|
| 64 |
55
|
fveq2d |
|
| 65 |
|
fvif |
|
| 66 |
|
op1stg |
|
| 67 |
3 40 66
|
sylancl |
|
| 68 |
|
ovex |
|
| 69 |
|
op1stg |
|
| 70 |
68 4 69
|
sylancr |
|
| 71 |
67 70
|
ifeq12d |
|
| 72 |
65 71
|
eqtrid |
|
| 73 |
64 72
|
eqtrd |
|
| 74 |
6 73
|
eqtrid |
|
| 75 |
55
|
fveq2d |
|
| 76 |
|
fvif |
|
| 77 |
|
op2ndg |
|
| 78 |
3 40 77
|
sylancl |
|
| 79 |
|
op2ndg |
|
| 80 |
68 4 79
|
sylancr |
|
| 81 |
78 80
|
ifeq12d |
|
| 82 |
76 81
|
eqtrid |
|
| 83 |
75 82
|
eqtrd |
|
| 84 |
7 83
|
eqtrid |
|
| 85 |
63 74 84
|
3jca |
|