Description: If B is a finite subset of ordered class A , we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 3-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | safesnsupfilb.small | |
|
safesnsupfilb.finite | |
||
safesnsupfilb.subset | |
||
safesnsupfilb.ordered | |
||
Assertion | safesnsupfilb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | safesnsupfilb.small | |
|
2 | safesnsupfilb.finite | |
|
3 | safesnsupfilb.subset | |
|
4 | safesnsupfilb.ordered | |
|
5 | 4 | ad2antrr | |
6 | 3 | ad2antrr | |
7 | 2 | ad2antrr | |
8 | simpr | |
|
9 | eqidd | |
|
10 | 5 6 7 8 9 | supgtoreq | |
11 | df-or | |
|
12 | orcom | |
|
13 | df-ne | |
|
14 | 13 | imbi1i | |
15 | 11 12 14 | 3bitr4i | |
16 | 10 15 | sylib | |
17 | 16 | ralrimiva | |
18 | iftrue | |
|
19 | 18 | difeq2d | |
20 | 19 | adantl | |
21 | 20 | raleqdv | |
22 | simpr | |
|
23 | 22 | iftrued | |
24 | 23 | raleqdv | |
25 | 2 | adantr | |
26 | 1 | adantr | |
27 | 0elon | |
|
28 | eleq1 | |
|
29 | 27 28 | mpbiri | |
30 | 1on | |
|
31 | eleq1 | |
|
32 | 30 31 | mpbiri | |
33 | 29 32 | jaoi | |
34 | 26 33 | syl | |
35 | 22 34 | sdomne0d | |
36 | 3 | adantr | |
37 | 25 35 36 | 3jca | |
38 | fisupcl | |
|
39 | 4 37 38 | syl2an2r | |
40 | breq2 | |
|
41 | 40 | ralsng | |
42 | 39 41 | syl | |
43 | 24 42 | bitrd | |
44 | 43 | ralbidv | |
45 | raldifsnb | |
|
46 | 44 45 | bitr4di | |
47 | 21 46 | bitrd | |
48 | 17 47 | mpbird | |
49 | ral0 | |
|
50 | iffalse | |
|
51 | 50 | adantl | |
52 | 51 | difeq2d | |
53 | difid | |
|
54 | 52 53 | eqtrdi | |
55 | 54 | raleqdv | |
56 | 49 55 | mpbiri | |
57 | 48 56 | pm2.61dan | |