Step |
Hyp |
Ref |
Expression |
1 |
|
sategoelfvb.s |
|
2 |
|
ovexd |
|
3 |
|
simpl |
|
4 |
|
opeq1 |
|
5 |
4
|
opeq2d |
|
6 |
5
|
eqeq2d |
|
7 |
6
|
rexbidv |
|
8 |
7
|
adantl |
|
9 |
|
simpr |
|
10 |
|
opeq2 |
|
11 |
10
|
opeq2d |
|
12 |
11
|
eqeq2d |
|
13 |
12
|
adantl |
|
14 |
|
eqidd |
|
15 |
9 13 14
|
rspcedvd |
|
16 |
3 8 15
|
rspcedvd |
|
17 |
|
goel |
|
18 |
|
goel |
|
19 |
17 18
|
eqeqan12d |
|
20 |
19
|
2rexbidva |
|
21 |
16 20
|
mpbird |
|
22 |
|
eqeq1 |
|
23 |
22
|
2rexbidv |
|
24 |
|
fmla0 |
|
25 |
23 24
|
elrab2 |
|
26 |
2 21 25
|
sylanbrc |
|
27 |
|
satefvfmla0 |
|
28 |
26 27
|
sylan2 |
|
29 |
1 28
|
eqtrid |
|
30 |
29
|
eleq2d |
|
31 |
|
fveq1 |
|
32 |
|
fveq1 |
|
33 |
31 32
|
eleq12d |
|
34 |
33
|
elrab |
|
35 |
30 34
|
bitrdi |
|
36 |
17
|
fveq2d |
|
37 |
36
|
fveq2d |
|
38 |
|
0ex |
|
39 |
|
opex |
|
40 |
38 39
|
op2nd |
|
41 |
40
|
fveq2i |
|
42 |
|
op1stg |
|
43 |
41 42
|
eqtrid |
|
44 |
37 43
|
eqtrd |
|
45 |
44
|
fveq2d |
|
46 |
36
|
fveq2d |
|
47 |
40
|
fveq2i |
|
48 |
|
op2ndg |
|
49 |
47 48
|
eqtrid |
|
50 |
46 49
|
eqtrd |
|
51 |
50
|
fveq2d |
|
52 |
45 51
|
eleq12d |
|
53 |
52
|
adantl |
|
54 |
53
|
anbi2d |
|
55 |
35 54
|
bitrd |
|