Metamath Proof Explorer


Theorem sategoelfvb

Description: Characterization of a valuation S of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)

Ref Expression
Hypothesis sategoelfvb.s E=MSatA𝑔B
Assertion sategoelfvb MVAωBωSESMωSASB

Proof

Step Hyp Ref Expression
1 sategoelfvb.s E=MSatA𝑔B
2 ovexd AωBωA𝑔BV
3 simpl AωBωAω
4 opeq1 a=Aab=Ab
5 4 opeq2d a=Aab=Ab
6 5 eqeq2d a=AAB=abAB=Ab
7 6 rexbidv a=AbωAB=abbωAB=Ab
8 7 adantl AωBωa=AbωAB=abbωAB=Ab
9 simpr AωBωBω
10 opeq2 b=BAb=AB
11 10 opeq2d b=BAb=AB
12 11 eqeq2d b=BAB=AbAB=AB
13 12 adantl AωBωb=BAB=AbAB=AB
14 eqidd AωBωAB=AB
15 9 13 14 rspcedvd AωBωbωAB=Ab
16 3 8 15 rspcedvd AωBωaωbωAB=ab
17 goel AωBωA𝑔B=AB
18 goel aωbωa𝑔b=ab
19 17 18 eqeqan12d AωBωaωbωA𝑔B=a𝑔bAB=ab
20 19 2rexbidva AωBωaωbωA𝑔B=a𝑔baωbωAB=ab
21 16 20 mpbird AωBωaωbωA𝑔B=a𝑔b
22 eqeq1 x=A𝑔Bx=a𝑔bA𝑔B=a𝑔b
23 22 2rexbidv x=A𝑔Baωbωx=a𝑔baωbωA𝑔B=a𝑔b
24 fmla0 Fmla=xV|aωbωx=a𝑔b
25 23 24 elrab2 A𝑔BFmlaA𝑔BVaωbωA𝑔B=a𝑔b
26 2 21 25 sylanbrc AωBωA𝑔BFmla
27 satefvfmla0 MVA𝑔BFmlaMSatA𝑔B=aMω|a1st2ndA𝑔Ba2nd2ndA𝑔B
28 26 27 sylan2 MVAωBωMSatA𝑔B=aMω|a1st2ndA𝑔Ba2nd2ndA𝑔B
29 1 28 eqtrid MVAωBωE=aMω|a1st2ndA𝑔Ba2nd2ndA𝑔B
30 29 eleq2d MVAωBωSESaMω|a1st2ndA𝑔Ba2nd2ndA𝑔B
31 fveq1 a=Sa1st2ndA𝑔B=S1st2ndA𝑔B
32 fveq1 a=Sa2nd2ndA𝑔B=S2nd2ndA𝑔B
33 31 32 eleq12d a=Sa1st2ndA𝑔Ba2nd2ndA𝑔BS1st2ndA𝑔BS2nd2ndA𝑔B
34 33 elrab SaMω|a1st2ndA𝑔Ba2nd2ndA𝑔BSMωS1st2ndA𝑔BS2nd2ndA𝑔B
35 30 34 bitrdi MVAωBωSESMωS1st2ndA𝑔BS2nd2ndA𝑔B
36 17 fveq2d AωBω2ndA𝑔B=2ndAB
37 36 fveq2d AωBω1st2ndA𝑔B=1st2ndAB
38 0ex V
39 opex ABV
40 38 39 op2nd 2ndAB=AB
41 40 fveq2i 1st2ndAB=1stAB
42 op1stg AωBω1stAB=A
43 41 42 eqtrid AωBω1st2ndAB=A
44 37 43 eqtrd AωBω1st2ndA𝑔B=A
45 44 fveq2d AωBωS1st2ndA𝑔B=SA
46 36 fveq2d AωBω2nd2ndA𝑔B=2nd2ndAB
47 40 fveq2i 2nd2ndAB=2ndAB
48 op2ndg AωBω2ndAB=B
49 47 48 eqtrid AωBω2nd2ndAB=B
50 46 49 eqtrd AωBω2nd2ndA𝑔B=B
51 50 fveq2d AωBωS2nd2ndA𝑔B=SB
52 45 51 eleq12d AωBωS1st2ndA𝑔BS2nd2ndA𝑔BSASB
53 52 adantl MVAωBωS1st2ndA𝑔BS2nd2ndA𝑔BSASB
54 53 anbi2d MVAωBωSMωS1st2ndA𝑔BS2nd2ndA𝑔BSMωSASB
55 35 54 bitrd MVAωBωSESMωSASB