Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Godel-sets of formulas - part 1
satffunlem1lem2
Next ⟩
satffunlem2lem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
satffunlem1lem2
Description:
Lemma 2 for
satffunlem1
.
(Contributed by
AV
, 23-Oct-2023)
Ref
Expression
Assertion
satffunlem1lem2
ω
ω
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
dom
M
Sat
E
∅
∩
dom
x
y
|
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
=
∅
Proof
Step
Hyp
Ref
Expression
1
peano1
ω
⊢
∅
∈
ω
2
satfdmfmla
ω
⊢
M
∈
V
∧
E
∈
W
∧
∅
∈
ω
→
dom
M
Sat
E
∅
=
Fmla
∅
3
1
2
mp3an3
⊢
M
∈
V
∧
E
∈
W
→
dom
M
Sat
E
∅
=
Fmla
∅
4
ovex
ω
⊢
M
ω
∈
V
5
4
difexi
ω
⊢
M
ω
∖
2
nd
u
∩
2
nd
v
∈
V
6
5
a1i
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
v
∈
M
Sat
E
∅
→
M
ω
∖
2
nd
u
∩
2
nd
v
∈
V
7
6
ralrimiva
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
∀
v
∈
M
Sat
E
∅
M
ω
∖
2
nd
u
∩
2
nd
v
∈
V
8
4
rabex
ω
ω
⊢
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
∈
V
9
8
a1i
ω
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
i
∈
ω
→
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
∈
V
10
9
ralrimiva
ω
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
∀
i
∈
ω
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
∈
V
11
7
10
jca
ω
ω
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
∀
v
∈
M
Sat
E
∅
M
ω
∖
2
nd
u
∩
2
nd
v
∈
V
∧
∀
i
∈
ω
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
∈
V
12
11
ralrimiva
ω
ω
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
∀
u
∈
M
Sat
E
∅
∀
v
∈
M
Sat
E
∅
M
ω
∖
2
nd
u
∩
2
nd
v
∈
V
∧
∀
i
∈
ω
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
∈
V
13
dmopab2rex
ω
ω
ω
ω
ω
ω
ω
ω
ω
⊢
∀
u
∈
M
Sat
E
∅
∀
v
∈
M
Sat
E
∅
M
ω
∖
2
nd
u
∩
2
nd
v
∈
V
∧
∀
i
∈
ω
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
∈
V
→
dom
x
y
|
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
=
x
|
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
14
12
13
syl
ω
ω
ω
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
dom
x
y
|
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
=
x
|
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
15
satfrel
ω
⊢
M
∈
V
∧
E
∈
W
∧
∅
∈
ω
→
Rel
M
Sat
E
∅
16
1
15
mp3an3
⊢
M
∈
V
∧
E
∈
W
→
Rel
M
Sat
E
∅
17
1stdm
⊢
Rel
M
Sat
E
∅
∧
u
∈
M
Sat
E
∅
→
1
st
u
∈
dom
M
Sat
E
∅
18
16
17
sylan
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
1
st
u
∈
dom
M
Sat
E
∅
19
2
eqcomd
ω
⊢
M
∈
V
∧
E
∈
W
∧
∅
∈
ω
→
Fmla
∅
=
dom
M
Sat
E
∅
20
1
19
mp3an3
⊢
M
∈
V
∧
E
∈
W
→
Fmla
∅
=
dom
M
Sat
E
∅
21
20
adantr
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
Fmla
∅
=
dom
M
Sat
E
∅
22
18
21
eleqtrrd
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
1
st
u
∈
Fmla
∅
23
22
adantr
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
1
st
u
∈
Fmla
∅
24
oveq1
⊢
f
=
1
st
u
→
f
⊼
𝑔
g
=
1
st
u
⊼
𝑔
g
25
24
eqeq2d
⊢
f
=
1
st
u
→
x
=
f
⊼
𝑔
g
↔
x
=
1
st
u
⊼
𝑔
g
26
25
rexbidv
⊢
f
=
1
st
u
→
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
↔
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
27
eqidd
⊢
f
=
1
st
u
→
i
=
i
28
id
⊢
f
=
1
st
u
→
f
=
1
st
u
29
27
28
goaleq12d
⊢
f
=
1
st
u
→
∀
𝑔
i
f
=
∀
𝑔
i
1
st
u
30
29
eqeq2d
⊢
f
=
1
st
u
→
x
=
∀
𝑔
i
f
↔
x
=
∀
𝑔
i
1
st
u
31
30
rexbidv
ω
ω
⊢
f
=
1
st
u
→
∃
i
∈
ω
x
=
∀
𝑔
i
f
↔
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
32
26
31
orbi12d
ω
ω
⊢
f
=
1
st
u
→
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
↔
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
33
32
adantl
ω
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
f
=
1
st
u
→
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
↔
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
34
1stdm
⊢
Rel
M
Sat
E
∅
∧
v
∈
M
Sat
E
∅
→
1
st
v
∈
dom
M
Sat
E
∅
35
16
34
sylan
⊢
M
∈
V
∧
E
∈
W
∧
v
∈
M
Sat
E
∅
→
1
st
v
∈
dom
M
Sat
E
∅
36
20
adantr
⊢
M
∈
V
∧
E
∈
W
∧
v
∈
M
Sat
E
∅
→
Fmla
∅
=
dom
M
Sat
E
∅
37
35
36
eleqtrrd
⊢
M
∈
V
∧
E
∈
W
∧
v
∈
M
Sat
E
∅
→
1
st
v
∈
Fmla
∅
38
37
ad4ant13
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
v
∈
M
Sat
E
∅
∧
x
=
1
st
u
⊼
𝑔
1
st
v
→
1
st
v
∈
Fmla
∅
39
oveq2
⊢
g
=
1
st
v
→
1
st
u
⊼
𝑔
g
=
1
st
u
⊼
𝑔
1
st
v
40
39
eqeq2d
⊢
g
=
1
st
v
→
x
=
1
st
u
⊼
𝑔
g
↔
x
=
1
st
u
⊼
𝑔
1
st
v
41
40
adantl
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
v
∈
M
Sat
E
∅
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
g
=
1
st
v
→
x
=
1
st
u
⊼
𝑔
g
↔
x
=
1
st
u
⊼
𝑔
1
st
v
42
simpr
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
v
∈
M
Sat
E
∅
∧
x
=
1
st
u
⊼
𝑔
1
st
v
→
x
=
1
st
u
⊼
𝑔
1
st
v
43
38
41
42
rspcedvd
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
v
∈
M
Sat
E
∅
∧
x
=
1
st
u
⊼
𝑔
1
st
v
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
44
43
ex
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
v
∈
M
Sat
E
∅
→
x
=
1
st
u
⊼
𝑔
1
st
v
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
45
44
rexlimdva
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
46
45
orim1d
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
47
46
imp
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
48
23
33
47
rspcedvd
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
f
∈
Fmla
∅
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
49
48
ex
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
f
∈
Fmla
∅
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
50
49
rexlimdva
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
f
∈
Fmla
∅
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
51
releldm2
⊢
Rel
M
Sat
E
∅
→
f
∈
dom
M
Sat
E
∅
↔
∃
u
∈
M
Sat
E
∅
1
st
u
=
f
52
16
51
syl
⊢
M
∈
V
∧
E
∈
W
→
f
∈
dom
M
Sat
E
∅
↔
∃
u
∈
M
Sat
E
∅
1
st
u
=
f
53
3
eleq2d
⊢
M
∈
V
∧
E
∈
W
→
f
∈
dom
M
Sat
E
∅
↔
f
∈
Fmla
∅
54
52
53
bitr3d
⊢
M
∈
V
∧
E
∈
W
→
∃
u
∈
M
Sat
E
∅
1
st
u
=
f
↔
f
∈
Fmla
∅
55
r19.41v
ω
ω
⊢
∃
u
∈
M
Sat
E
∅
1
st
u
=
f
∧
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
↔
∃
u
∈
M
Sat
E
∅
1
st
u
=
f
∧
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
56
oveq1
⊢
1
st
u
=
f
→
1
st
u
⊼
𝑔
g
=
f
⊼
𝑔
g
57
56
eqeq2d
⊢
1
st
u
=
f
→
x
=
1
st
u
⊼
𝑔
g
↔
x
=
f
⊼
𝑔
g
58
57
rexbidv
⊢
1
st
u
=
f
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
↔
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
59
eqidd
⊢
1
st
u
=
f
→
i
=
i
60
id
⊢
1
st
u
=
f
→
1
st
u
=
f
61
59
60
goaleq12d
⊢
1
st
u
=
f
→
∀
𝑔
i
1
st
u
=
∀
𝑔
i
f
62
61
eqeq2d
⊢
1
st
u
=
f
→
x
=
∀
𝑔
i
1
st
u
↔
x
=
∀
𝑔
i
f
63
62
rexbidv
ω
ω
⊢
1
st
u
=
f
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
i
∈
ω
x
=
∀
𝑔
i
f
64
58
63
orbi12d
ω
ω
⊢
1
st
u
=
f
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
65
64
adantl
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
1
st
u
=
f
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
66
3
eqcomd
⊢
M
∈
V
∧
E
∈
W
→
Fmla
∅
=
dom
M
Sat
E
∅
67
66
eleq2d
⊢
M
∈
V
∧
E
∈
W
→
g
∈
Fmla
∅
↔
g
∈
dom
M
Sat
E
∅
68
releldm2
⊢
Rel
M
Sat
E
∅
→
g
∈
dom
M
Sat
E
∅
↔
∃
v
∈
M
Sat
E
∅
1
st
v
=
g
69
16
68
syl
⊢
M
∈
V
∧
E
∈
W
→
g
∈
dom
M
Sat
E
∅
↔
∃
v
∈
M
Sat
E
∅
1
st
v
=
g
70
67
69
bitrd
⊢
M
∈
V
∧
E
∈
W
→
g
∈
Fmla
∅
↔
∃
v
∈
M
Sat
E
∅
1
st
v
=
g
71
r19.41v
⊢
∃
v
∈
M
Sat
E
∅
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
↔
∃
v
∈
M
Sat
E
∅
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
72
39
eqcoms
⊢
1
st
v
=
g
→
1
st
u
⊼
𝑔
g
=
1
st
u
⊼
𝑔
1
st
v
73
72
eqeq2d
⊢
1
st
v
=
g
→
x
=
1
st
u
⊼
𝑔
g
↔
x
=
1
st
u
⊼
𝑔
1
st
v
74
73
biimpa
⊢
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
→
x
=
1
st
u
⊼
𝑔
1
st
v
75
74
a1i
⊢
M
∈
V
∧
E
∈
W
→
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
→
x
=
1
st
u
⊼
𝑔
1
st
v
76
75
reximdv
⊢
M
∈
V
∧
E
∈
W
→
∃
v
∈
M
Sat
E
∅
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
77
71
76
biimtrrid
⊢
M
∈
V
∧
E
∈
W
→
∃
v
∈
M
Sat
E
∅
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
78
77
expd
⊢
M
∈
V
∧
E
∈
W
→
∃
v
∈
M
Sat
E
∅
1
st
v
=
g
→
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
79
70
78
sylbid
⊢
M
∈
V
∧
E
∈
W
→
g
∈
Fmla
∅
→
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
80
79
rexlimdv
⊢
M
∈
V
∧
E
∈
W
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
81
80
adantr
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
82
81
adantr
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
1
st
u
=
f
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
83
82
orim1d
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
1
st
u
=
f
→
∃
g
∈
Fmla
∅
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
84
65
83
sylbird
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
∧
1
st
u
=
f
→
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
85
84
expimpd
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
u
∈
M
Sat
E
∅
→
1
st
u
=
f
∧
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
86
85
reximdva
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
∃
u
∈
M
Sat
E
∅
1
st
u
=
f
∧
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
87
55
86
biimtrrid
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
∃
u
∈
M
Sat
E
∅
1
st
u
=
f
∧
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
88
87
expd
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
∃
u
∈
M
Sat
E
∅
1
st
u
=
f
→
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
89
54
88
sylbird
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
f
∈
Fmla
∅
→
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
90
89
rexlimdv
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
∃
f
∈
Fmla
∅
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
91
50
90
impbid
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
f
∈
Fmla
∅
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
92
91
abbidv
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
x
|
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
=
x
|
∃
f
∈
Fmla
∅
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
93
14
92
eqtrd
ω
ω
ω
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
dom
x
y
|
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
=
x
|
∃
f
∈
Fmla
∅
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
94
3
93
ineq12d
ω
ω
ω
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
dom
M
Sat
E
∅
∩
dom
x
y
|
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
=
Fmla
∅
∩
x
|
∃
f
∈
Fmla
∅
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
95
fmla0disjsuc
ω
⊢
Fmla
∅
∩
x
|
∃
f
∈
Fmla
∅
∃
g
∈
Fmla
∅
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
=
∅
96
94
95
eqtrdi
ω
ω
ω
ω
⊢
M
∈
V
∧
E
∈
W
→
dom
M
Sat
E
∅
∩
dom
x
y
|
∃
u
∈
M
Sat
E
∅
∃
v
∈
M
Sat
E
∅
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
f
∈
M
ω
|
∀
j
∈
M
i
j
∪
f
↾
ω
∖
i
∈
2
nd
u
=
∅