Metamath Proof Explorer


Theorem satffunlem1lem2

Description: Lemma 2 for satffunlem1 . (Contributed by AV, 23-Oct-2023)

Ref Expression
Assertion satffunlem1lem2 MVEWdomMSatEdomxy|uMSatEvMSatEx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|jMijfωi2ndu=

Proof

Step Hyp Ref Expression
1 peano1 ω
2 satfdmfmla MVEWωdomMSatE=Fmla
3 1 2 mp3an3 MVEWdomMSatE=Fmla
4 ovex MωV
5 4 difexi Mω2ndu2ndvV
6 5 a1i MVEWuMSatEvMSatEMω2ndu2ndvV
7 6 ralrimiva MVEWuMSatEvMSatEMω2ndu2ndvV
8 4 rabex fMω|jMijfωi2nduV
9 8 a1i MVEWuMSatEiωfMω|jMijfωi2nduV
10 9 ralrimiva MVEWuMSatEiωfMω|jMijfωi2nduV
11 7 10 jca MVEWuMSatEvMSatEMω2ndu2ndvViωfMω|jMijfωi2nduV
12 11 ralrimiva MVEWuMSatEvMSatEMω2ndu2ndvViωfMω|jMijfωi2nduV
13 dmopab2rex uMSatEvMSatEMω2ndu2ndvViωfMω|jMijfωi2nduVdomxy|uMSatEvMSatEx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|jMijfωi2ndu=x|uMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stu
14 12 13 syl MVEWdomxy|uMSatEvMSatEx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|jMijfωi2ndu=x|uMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stu
15 satfrel MVEWωRelMSatE
16 1 15 mp3an3 MVEWRelMSatE
17 1stdm RelMSatEuMSatE1studomMSatE
18 16 17 sylan MVEWuMSatE1studomMSatE
19 2 eqcomd MVEWωFmla=domMSatE
20 1 19 mp3an3 MVEWFmla=domMSatE
21 20 adantr MVEWuMSatEFmla=domMSatE
22 18 21 eleqtrrd MVEWuMSatE1stuFmla
23 22 adantr MVEWuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stu1stuFmla
24 oveq1 f=1stuf𝑔g=1stu𝑔g
25 24 eqeq2d f=1stux=f𝑔gx=1stu𝑔g
26 25 rexbidv f=1stugFmlax=f𝑔ggFmlax=1stu𝑔g
27 eqidd f=1stui=i
28 id f=1stuf=1stu
29 27 28 goaleq12d f=1stu𝑔if=𝑔i1stu
30 29 eqeq2d f=1stux=𝑔ifx=𝑔i1stu
31 30 rexbidv f=1stuiωx=𝑔ifiωx=𝑔i1stu
32 26 31 orbi12d f=1stugFmlax=f𝑔giωx=𝑔ifgFmlax=1stu𝑔giωx=𝑔i1stu
33 32 adantl MVEWuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stuf=1stugFmlax=f𝑔giωx=𝑔ifgFmlax=1stu𝑔giωx=𝑔i1stu
34 1stdm RelMSatEvMSatE1stvdomMSatE
35 16 34 sylan MVEWvMSatE1stvdomMSatE
36 20 adantr MVEWvMSatEFmla=domMSatE
37 35 36 eleqtrrd MVEWvMSatE1stvFmla
38 37 ad4ant13 MVEWuMSatEvMSatEx=1stu𝑔1stv1stvFmla
39 oveq2 g=1stv1stu𝑔g=1stu𝑔1stv
40 39 eqeq2d g=1stvx=1stu𝑔gx=1stu𝑔1stv
41 40 adantl MVEWuMSatEvMSatEx=1stu𝑔1stvg=1stvx=1stu𝑔gx=1stu𝑔1stv
42 simpr MVEWuMSatEvMSatEx=1stu𝑔1stvx=1stu𝑔1stv
43 38 41 42 rspcedvd MVEWuMSatEvMSatEx=1stu𝑔1stvgFmlax=1stu𝑔g
44 43 ex MVEWuMSatEvMSatEx=1stu𝑔1stvgFmlax=1stu𝑔g
45 44 rexlimdva MVEWuMSatEvMSatEx=1stu𝑔1stvgFmlax=1stu𝑔g
46 45 orim1d MVEWuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stugFmlax=1stu𝑔giωx=𝑔i1stu
47 46 imp MVEWuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stugFmlax=1stu𝑔giωx=𝑔i1stu
48 23 33 47 rspcedvd MVEWuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stufFmlagFmlax=f𝑔giωx=𝑔if
49 48 ex MVEWuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stufFmlagFmlax=f𝑔giωx=𝑔if
50 49 rexlimdva MVEWuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stufFmlagFmlax=f𝑔giωx=𝑔if
51 releldm2 RelMSatEfdomMSatEuMSatE1stu=f
52 16 51 syl MVEWfdomMSatEuMSatE1stu=f
53 3 eleq2d MVEWfdomMSatEfFmla
54 52 53 bitr3d MVEWuMSatE1stu=ffFmla
55 r19.41v uMSatE1stu=fgFmlax=f𝑔giωx=𝑔ifuMSatE1stu=fgFmlax=f𝑔giωx=𝑔if
56 oveq1 1stu=f1stu𝑔g=f𝑔g
57 56 eqeq2d 1stu=fx=1stu𝑔gx=f𝑔g
58 57 rexbidv 1stu=fgFmlax=1stu𝑔ggFmlax=f𝑔g
59 eqidd 1stu=fi=i
60 id 1stu=f1stu=f
61 59 60 goaleq12d 1stu=f𝑔i1stu=𝑔if
62 61 eqeq2d 1stu=fx=𝑔i1stux=𝑔if
63 62 rexbidv 1stu=fiωx=𝑔i1stuiωx=𝑔if
64 58 63 orbi12d 1stu=fgFmlax=1stu𝑔giωx=𝑔i1stugFmlax=f𝑔giωx=𝑔if
65 64 adantl MVEWuMSatE1stu=fgFmlax=1stu𝑔giωx=𝑔i1stugFmlax=f𝑔giωx=𝑔if
66 3 eqcomd MVEWFmla=domMSatE
67 66 eleq2d MVEWgFmlagdomMSatE
68 releldm2 RelMSatEgdomMSatEvMSatE1stv=g
69 16 68 syl MVEWgdomMSatEvMSatE1stv=g
70 67 69 bitrd MVEWgFmlavMSatE1stv=g
71 r19.41v vMSatE1stv=gx=1stu𝑔gvMSatE1stv=gx=1stu𝑔g
72 39 eqcoms 1stv=g1stu𝑔g=1stu𝑔1stv
73 72 eqeq2d 1stv=gx=1stu𝑔gx=1stu𝑔1stv
74 73 biimpa 1stv=gx=1stu𝑔gx=1stu𝑔1stv
75 74 a1i MVEW1stv=gx=1stu𝑔gx=1stu𝑔1stv
76 75 reximdv MVEWvMSatE1stv=gx=1stu𝑔gvMSatEx=1stu𝑔1stv
77 71 76 biimtrrid MVEWvMSatE1stv=gx=1stu𝑔gvMSatEx=1stu𝑔1stv
78 77 expd MVEWvMSatE1stv=gx=1stu𝑔gvMSatEx=1stu𝑔1stv
79 70 78 sylbid MVEWgFmlax=1stu𝑔gvMSatEx=1stu𝑔1stv
80 79 rexlimdv MVEWgFmlax=1stu𝑔gvMSatEx=1stu𝑔1stv
81 80 adantr MVEWuMSatEgFmlax=1stu𝑔gvMSatEx=1stu𝑔1stv
82 81 adantr MVEWuMSatE1stu=fgFmlax=1stu𝑔gvMSatEx=1stu𝑔1stv
83 82 orim1d MVEWuMSatE1stu=fgFmlax=1stu𝑔giωx=𝑔i1stuvMSatEx=1stu𝑔1stviωx=𝑔i1stu
84 65 83 sylbird MVEWuMSatE1stu=fgFmlax=f𝑔giωx=𝑔ifvMSatEx=1stu𝑔1stviωx=𝑔i1stu
85 84 expimpd MVEWuMSatE1stu=fgFmlax=f𝑔giωx=𝑔ifvMSatEx=1stu𝑔1stviωx=𝑔i1stu
86 85 reximdva MVEWuMSatE1stu=fgFmlax=f𝑔giωx=𝑔ifuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stu
87 55 86 biimtrrid MVEWuMSatE1stu=fgFmlax=f𝑔giωx=𝑔ifuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stu
88 87 expd MVEWuMSatE1stu=fgFmlax=f𝑔giωx=𝑔ifuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stu
89 54 88 sylbird MVEWfFmlagFmlax=f𝑔giωx=𝑔ifuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stu
90 89 rexlimdv MVEWfFmlagFmlax=f𝑔giωx=𝑔ifuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stu
91 50 90 impbid MVEWuMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stufFmlagFmlax=f𝑔giωx=𝑔if
92 91 abbidv MVEWx|uMSatEvMSatEx=1stu𝑔1stviωx=𝑔i1stu=x|fFmlagFmlax=f𝑔giωx=𝑔if
93 14 92 eqtrd MVEWdomxy|uMSatEvMSatEx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|jMijfωi2ndu=x|fFmlagFmlax=f𝑔giωx=𝑔if
94 3 93 ineq12d MVEWdomMSatEdomxy|uMSatEvMSatEx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|jMijfωi2ndu=Fmlax|fFmlagFmlax=f𝑔giωx=𝑔if
95 fmla0disjsuc Fmlax|fFmlagFmlax=f𝑔giωx=𝑔if=
96 94 95 eqtrdi MVEWdomMSatEdomxy|uMSatEvMSatEx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=fMω|jMijfωi2ndu=