Metamath Proof Explorer


Theorem sbgoldbalt

Description: An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020)

Ref Expression
Assertion sbgoldbalt nEven4<nnGoldbachEvennEven2<npqn=p+q

Proof

Step Hyp Ref Expression
1 2z 2
2 evenz nEvenn
3 zltp1le 2n2<n2+1n
4 1 2 3 sylancr nEven2<n2+1n
5 2p1e3 2+1=3
6 5 breq1i 2+1n3n
7 3re 3
8 7 a1i nEven3
9 2 zred nEvenn
10 8 9 leloed nEven3n3<n3=n
11 3z 3
12 zltp1le 3n3<n3+1n
13 11 2 12 sylancr nEven3<n3+1n
14 3p1e4 3+1=4
15 14 breq1i 3+1n4n
16 4re 4
17 16 a1i nEven4
18 17 9 leloed nEven4n4<n4=n
19 pm3.35 4<n4<nnGoldbachEvennGoldbachEven
20 isgbe nGoldbachEvennEvenpqpOddqOddn=p+q
21 simp3 pOddqOddn=p+qn=p+q
22 21 a1i nEvenpqpOddqOddn=p+qn=p+q
23 22 reximdva nEvenpqpOddqOddn=p+qqn=p+q
24 23 reximdva nEvenpqpOddqOddn=p+qpqn=p+q
25 24 imp nEvenpqpOddqOddn=p+qpqn=p+q
26 20 25 sylbi nGoldbachEvenpqn=p+q
27 26 a1d nGoldbachEvennEvenpqn=p+q
28 19 27 syl 4<n4<nnGoldbachEvennEvenpqn=p+q
29 28 ex 4<n4<nnGoldbachEvennEvenpqn=p+q
30 29 com23 4<nnEven4<nnGoldbachEvenpqn=p+q
31 2prm 2
32 2p2e4 2+2=4
33 32 eqcomi 4=2+2
34 rspceov 224=2+2pq4=p+q
35 31 31 33 34 mp3an pq4=p+q
36 eqeq1 4=n4=p+qn=p+q
37 36 2rexbidv 4=npq4=p+qpqn=p+q
38 35 37 mpbii 4=npqn=p+q
39 38 a1d 4=n4<nnGoldbachEvenpqn=p+q
40 39 a1d 4=nnEven4<nnGoldbachEvenpqn=p+q
41 30 40 jaoi 4<n4=nnEven4<nnGoldbachEvenpqn=p+q
42 41 com12 nEven4<n4=n4<nnGoldbachEvenpqn=p+q
43 18 42 sylbid nEven4n4<nnGoldbachEvenpqn=p+q
44 15 43 biimtrid nEven3+1n4<nnGoldbachEvenpqn=p+q
45 13 44 sylbid nEven3<n4<nnGoldbachEvenpqn=p+q
46 45 com12 3<nnEven4<nnGoldbachEvenpqn=p+q
47 3odd 3Odd
48 eleq1 3=n3OddnOdd
49 47 48 mpbii 3=nnOdd
50 oddneven nOdd¬nEven
51 49 50 syl 3=n¬nEven
52 51 pm2.21d 3=nnEven4<nnGoldbachEvenpqn=p+q
53 46 52 jaoi 3<n3=nnEven4<nnGoldbachEvenpqn=p+q
54 53 com12 nEven3<n3=n4<nnGoldbachEvenpqn=p+q
55 10 54 sylbid nEven3n4<nnGoldbachEvenpqn=p+q
56 6 55 biimtrid nEven2+1n4<nnGoldbachEvenpqn=p+q
57 4 56 sylbid nEven2<n4<nnGoldbachEvenpqn=p+q
58 57 com23 nEven4<nnGoldbachEven2<npqn=p+q
59 2lt4 2<4
60 2re 2
61 60 a1i nEven2
62 lttr 24n2<44<n2<n
63 61 17 9 62 syl3anc nEven2<44<n2<n
64 59 63 mpani nEven4<n2<n
65 64 imp nEven4<n2<n
66 simpll nEven4<npqn=p+qnEven
67 simpr nEven4<npp
68 67 anim1i nEven4<npqpq
69 68 adantr nEven4<npqn=p+qpq
70 simpll nEven4<npqnEven4<n
71 70 anim1i nEven4<npqn=p+qnEven4<nn=p+q
72 df-3an nEven4<nn=p+qnEven4<nn=p+q
73 71 72 sylibr nEven4<npqn=p+qnEven4<nn=p+q
74 sbgoldbaltlem2 pqnEven4<nn=p+qpOddqOdd
75 69 73 74 sylc nEven4<npqn=p+qpOddqOdd
76 simpr nEven4<npqn=p+qn=p+q
77 df-3an pOddqOddn=p+qpOddqOddn=p+q
78 75 76 77 sylanbrc nEven4<npqn=p+qpOddqOddn=p+q
79 78 ex nEven4<npqn=p+qpOddqOddn=p+q
80 79 reximdva nEven4<npqn=p+qqpOddqOddn=p+q
81 80 reximdva nEven4<npqn=p+qpqpOddqOddn=p+q
82 81 imp nEven4<npqn=p+qpqpOddqOddn=p+q
83 66 82 jca nEven4<npqn=p+qnEvenpqpOddqOddn=p+q
84 83 ex nEven4<npqn=p+qnEvenpqpOddqOddn=p+q
85 84 20 imbitrrdi nEven4<npqn=p+qnGoldbachEven
86 65 85 embantd nEven4<n2<npqn=p+qnGoldbachEven
87 86 ex nEven4<n2<npqn=p+qnGoldbachEven
88 87 com23 nEven2<npqn=p+q4<nnGoldbachEven
89 58 88 impbid nEven4<nnGoldbachEven2<npqn=p+q
90 89 ralbiia nEven4<nnGoldbachEvennEven2<npqn=p+q