| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatid.a |
|
| 2 |
|
scmatid.b |
|
| 3 |
|
scmatid.e |
|
| 4 |
|
scmatid.0 |
|
| 5 |
|
scmatid.s |
|
| 6 |
|
scmatcrng.c |
|
| 7 |
|
crngring |
|
| 8 |
1 2 3 4 5
|
scmatsrng |
|
| 9 |
7 8
|
sylan2 |
|
| 10 |
6
|
subrgring |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
simp1lr |
|
| 13 |
|
eqid |
|
| 14 |
|
simp2 |
|
| 15 |
|
simp3 |
|
| 16 |
1 13 5
|
scmatmat |
|
| 17 |
16
|
imp |
|
| 18 |
17
|
adantrr |
|
| 19 |
18
|
3ad2ant1 |
|
| 20 |
1 3 13 14 15 19
|
matecld |
|
| 21 |
1 13 5
|
scmatmat |
|
| 22 |
21
|
imp |
|
| 23 |
22
|
adantrl |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
1 3 13 14 15 24
|
matecld |
|
| 26 |
|
eqid |
|
| 27 |
3 26
|
crngcom |
|
| 28 |
12 20 25 27
|
syl3anc |
|
| 29 |
28
|
ifeq1d |
|
| 30 |
29
|
mpoeq3dva |
|
| 31 |
7
|
anim2i |
|
| 32 |
|
eqid |
|
| 33 |
1 2 3 4 5 32
|
scmatdmat |
|
| 34 |
7 33
|
sylan2 |
|
| 35 |
1 2 3 4 5 32
|
scmatdmat |
|
| 36 |
7 35
|
sylan2 |
|
| 37 |
34 36
|
anim12d |
|
| 38 |
37
|
imp |
|
| 39 |
1 2 4 32
|
dmatmul |
|
| 40 |
31 38 39
|
syl2an2r |
|
| 41 |
38
|
ancomd |
|
| 42 |
1 2 4 32
|
dmatmul |
|
| 43 |
31 41 42
|
syl2an2r |
|
| 44 |
30 40 43
|
3eqtr4d |
|
| 45 |
44
|
ralrimivva |
|
| 46 |
6
|
subrgbas |
|
| 47 |
46
|
eqcomd |
|
| 48 |
|
eqid |
|
| 49 |
6 48
|
ressmulr |
|
| 50 |
49
|
eqcomd |
|
| 51 |
50
|
oveqd |
|
| 52 |
50
|
oveqd |
|
| 53 |
51 52
|
eqeq12d |
|
| 54 |
47 53
|
raleqbidv |
|
| 55 |
47 54
|
raleqbidv |
|
| 56 |
9 55
|
syl |
|
| 57 |
45 56
|
mpbird |
|
| 58 |
|
eqid |
|
| 59 |
|
eqid |
|
| 60 |
58 59
|
iscrng2 |
|
| 61 |
11 57 60
|
sylanbrc |
|