Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 30-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sermono.1 | |
|
sermono.2 | |
||
sermono.3 | |
||
sermono.4 | |
||
Assertion | sermono | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sermono.1 | |
|
2 | sermono.2 | |
|
3 | sermono.3 | |
|
4 | sermono.4 | |
|
5 | elfzuz | |
|
6 | uztrn | |
|
7 | 5 1 6 | syl2anr | |
8 | elfzuz3 | |
|
9 | 8 | adantl | |
10 | fzss2 | |
|
11 | 9 10 | syl | |
12 | 11 | sselda | |
13 | 3 | adantlr | |
14 | 12 13 | syldan | |
15 | readdcl | |
|
16 | 15 | adantl | |
17 | 7 14 16 | seqcl | |
18 | fveq2 | |
|
19 | 18 | breq2d | |
20 | 4 | ralrimiva | |
21 | 20 | adantr | |
22 | simpr | |
|
23 | 1 | adantr | |
24 | eluzelz | |
|
25 | 23 24 | syl | |
26 | 2 | adantr | |
27 | eluzelz | |
|
28 | 26 27 | syl | |
29 | peano2zm | |
|
30 | 28 29 | syl | |
31 | elfzelz | |
|
32 | 31 | adantl | |
33 | 1zzd | |
|
34 | fzaddel | |
|
35 | 25 30 32 33 34 | syl22anc | |
36 | 22 35 | mpbid | |
37 | zcn | |
|
38 | ax-1cn | |
|
39 | npcan | |
|
40 | 37 38 39 | sylancl | |
41 | 28 40 | syl | |
42 | 41 | oveq2d | |
43 | 36 42 | eleqtrd | |
44 | 19 21 43 | rspcdva | |
45 | fzelp1 | |
|
46 | 45 | adantl | |
47 | 41 | oveq2d | |
48 | 46 47 | eleqtrd | |
49 | 48 17 | syldan | |
50 | 18 | eleq1d | |
51 | 3 | ralrimiva | |
52 | 51 | adantr | |
53 | fzss1 | |
|
54 | 23 53 | syl | |
55 | fzp1elp1 | |
|
56 | 55 | adantl | |
57 | 56 47 | eleqtrd | |
58 | 54 57 | sseldd | |
59 | 50 52 58 | rspcdva | |
60 | 49 59 | addge01d | |
61 | 44 60 | mpbid | |
62 | 48 7 | syldan | |
63 | seqp1 | |
|
64 | 62 63 | syl | |
65 | 61 64 | breqtrrd | |
66 | 2 17 65 | monoord | |