Metamath Proof Explorer


Theorem sermono

Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 30-Jun-2013)

Ref Expression
Hypotheses sermono.1 φKM
sermono.2 φNK
sermono.3 φxMNFx
sermono.4 φxK+1N0Fx
Assertion sermono φseqM+FKseqM+FN

Proof

Step Hyp Ref Expression
1 sermono.1 φKM
2 sermono.2 φNK
3 sermono.3 φxMNFx
4 sermono.4 φxK+1N0Fx
5 elfzuz kKNkK
6 uztrn kKKMkM
7 5 1 6 syl2anr φkKNkM
8 elfzuz3 kKNNk
9 8 adantl φkKNNk
10 fzss2 NkMkMN
11 9 10 syl φkKNMkMN
12 11 sselda φkKNxMkxMN
13 3 adantlr φkKNxMNFx
14 12 13 syldan φkKNxMkFx
15 readdcl xyx+y
16 15 adantl φkKNxyx+y
17 7 14 16 seqcl φkKNseqM+Fk
18 fveq2 x=k+1Fx=Fk+1
19 18 breq2d x=k+10Fx0Fk+1
20 4 ralrimiva φxK+1N0Fx
21 20 adantr φkKN1xK+1N0Fx
22 simpr φkKN1kKN1
23 1 adantr φkKN1KM
24 eluzelz KMK
25 23 24 syl φkKN1K
26 2 adantr φkKN1NK
27 eluzelz NKN
28 26 27 syl φkKN1N
29 peano2zm NN1
30 28 29 syl φkKN1N1
31 elfzelz kKN1k
32 31 adantl φkKN1k
33 1zzd φkKN11
34 fzaddel KN1k1kKN1k+1K+1N-1+1
35 25 30 32 33 34 syl22anc φkKN1kKN1k+1K+1N-1+1
36 22 35 mpbid φkKN1k+1K+1N-1+1
37 zcn NN
38 ax-1cn 1
39 npcan N1N-1+1=N
40 37 38 39 sylancl NN-1+1=N
41 28 40 syl φkKN1N-1+1=N
42 41 oveq2d φkKN1K+1N-1+1=K+1N
43 36 42 eleqtrd φkKN1k+1K+1N
44 19 21 43 rspcdva φkKN10Fk+1
45 fzelp1 kKN1kKN-1+1
46 45 adantl φkKN1kKN-1+1
47 41 oveq2d φkKN1KN-1+1=KN
48 46 47 eleqtrd φkKN1kKN
49 48 17 syldan φkKN1seqM+Fk
50 18 eleq1d x=k+1FxFk+1
51 3 ralrimiva φxMNFx
52 51 adantr φkKN1xMNFx
53 fzss1 KMKNMN
54 23 53 syl φkKN1KNMN
55 fzp1elp1 kKN1k+1KN-1+1
56 55 adantl φkKN1k+1KN-1+1
57 56 47 eleqtrd φkKN1k+1KN
58 54 57 sseldd φkKN1k+1MN
59 50 52 58 rspcdva φkKN1Fk+1
60 49 59 addge01d φkKN10Fk+1seqM+FkseqM+Fk+Fk+1
61 44 60 mpbid φkKN1seqM+FkseqM+Fk+Fk+1
62 48 7 syldan φkKN1kM
63 seqp1 kMseqM+Fk+1=seqM+Fk+Fk+1
64 62 63 syl φkKN1seqM+Fk+1=seqM+Fk+Fk+1
65 61 64 breqtrrd φkKN1seqM+FkseqM+Fk+1
66 2 17 65 monoord φseqM+FKseqM+FN