Metamath Proof Explorer


Theorem sge0rernmpt

Description: If the sum of nonnegative extended reals is not +oo then no term is +oo . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0rernmpt.xph xφ
sge0rernmpt.a φAV
sge0rernmpt.b φxAB0+∞
sge0rernmpt.re φsum^xAB
Assertion sge0rernmpt φxAB0+∞

Proof

Step Hyp Ref Expression
1 sge0rernmpt.xph xφ
2 sge0rernmpt.a φAV
3 sge0rernmpt.b φxAB0+∞
4 sge0rernmpt.re φsum^xAB
5 0xr 0*
6 5 a1i φxA0*
7 pnfxr +∞*
8 7 a1i φxA+∞*
9 iccssxr 0+∞*
10 9 3 sselid φxAB*
11 iccgelb 0*+∞*B0+∞0B
12 6 8 3 11 syl3anc φxA0B
13 simpr φxA¬B<+∞¬B<+∞
14 nltpnft B*B=+∞¬B<+∞
15 10 14 syl φxAB=+∞¬B<+∞
16 15 adantr φxA¬B<+∞B=+∞¬B<+∞
17 13 16 mpbird φxA¬B<+∞B=+∞
18 17 eqcomd φxA¬B<+∞+∞=B
19 simpr φxAxA
20 eqid xAB=xAB
21 20 elrnmpt1 xAB0+∞BranxAB
22 19 3 21 syl2anc φxABranxAB
23 22 adantr φxA¬B<+∞BranxAB
24 18 23 eqeltrd φxA¬B<+∞+∞ranxAB
25 1 3 20 fmptdf φxAB:A0+∞
26 2 25 4 sge0rern φ¬+∞ranxAB
27 26 ad2antrr φxA¬B<+∞¬+∞ranxAB
28 24 27 condan φxAB<+∞
29 6 8 10 12 28 elicod φxAB0+∞