Description: Lemma 4 for sgrp2nmnd : M is a semigroup. (Contributed by AV, 29-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgm2nsgrp.s | |
|
mgm2nsgrp.b | |
||
sgrp2nmnd.o | |
||
Assertion | sgrp2nmndlem4 | Could not format assertion : No typesetting found for |- ( ( # ` S ) = 2 -> M e. Smgrp ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgm2nsgrp.s | |
|
2 | mgm2nsgrp.b | |
|
3 | sgrp2nmnd.o | |
|
4 | 1 | hashprdifel | |
5 | 3simpa | |
|
6 | 1 2 3 | sgrp2nmndlem1 | |
7 | 4 5 6 | 3syl | |
8 | eqid | |
|
9 | 1 2 3 8 | sgrp2nmndlem2 | |
10 | 9 | oveq1d | |
11 | 9 | oveq2d | |
12 | 10 11 | eqtr4d | |
13 | 12 | anidms | |
14 | 13 | 3ad2ant1 | |
15 | 9 | anidms | |
16 | 15 | adantr | |
17 | 16 | oveq1d | |
18 | 1 2 3 8 | sgrp2nmndlem2 | |
19 | 18 | oveq2d | |
20 | 16 19 18 | 3eqtr4rd | |
21 | 17 20 | eqtrd | |
22 | 21 | 3adant3 | |
23 | 14 22 | jca | |
24 | 18 | 3adant3 | |
25 | 1 2 3 8 | sgrp2nmndlem3 | |
26 | 25 | oveq2d | |
27 | 24 | oveq1d | |
28 | 15 | 3ad2ant1 | |
29 | 27 28 | eqtrd | |
30 | 24 26 29 | 3eqtr4rd | |
31 | simp2 | |
|
32 | 1 2 3 8 | sgrp2nmndlem3 | |
33 | 31 32 | syld3an1 | |
34 | 33 | oveq2d | |
35 | 18 | oveq1d | |
36 | 35 18 | eqtrd | |
37 | 36 | 3adant3 | |
38 | 24 34 37 | 3eqtr4rd | |
39 | 23 30 38 | jca32 | |
40 | 25 | oveq1d | |
41 | 28 | oveq2d | |
42 | 40 41 | eqtr4d | |
43 | 24 | oveq2d | |
44 | 25 | oveq1d | |
45 | 44 33 | eqtrd | |
46 | 25 43 45 | 3eqtr4rd | |
47 | 42 46 | jca | |
48 | 25 | oveq2d | |
49 | 33 | oveq1d | |
50 | 49 25 | eqtrd | |
51 | 33 48 50 | 3eqtr4rd | |
52 | 32 | oveq1d | |
53 | 32 | oveq2d | |
54 | 52 53 | eqtr4d | |
55 | 31 54 | syld3an1 | |
56 | 47 51 55 | jca32 | |
57 | oveq1 | |
|
58 | 57 | oveq1d | |
59 | oveq1 | |
|
60 | 58 59 | eqeq12d | |
61 | 60 | 2ralbidv | |
62 | oveq1 | |
|
63 | 62 | oveq1d | |
64 | oveq1 | |
|
65 | 63 64 | eqeq12d | |
66 | 65 | 2ralbidv | |
67 | 61 66 | ralprg | |
68 | oveq2 | |
|
69 | 68 | oveq1d | |
70 | oveq1 | |
|
71 | 70 | oveq2d | |
72 | 69 71 | eqeq12d | |
73 | 72 | ralbidv | |
74 | oveq2 | |
|
75 | 74 | oveq1d | |
76 | oveq1 | |
|
77 | 76 | oveq2d | |
78 | 75 77 | eqeq12d | |
79 | 78 | ralbidv | |
80 | 73 79 | ralprg | |
81 | oveq2 | |
|
82 | 81 | oveq1d | |
83 | 70 | oveq2d | |
84 | 82 83 | eqeq12d | |
85 | 84 | ralbidv | |
86 | oveq2 | |
|
87 | 86 | oveq1d | |
88 | 76 | oveq2d | |
89 | 87 88 | eqeq12d | |
90 | 89 | ralbidv | |
91 | 85 90 | ralprg | |
92 | 80 91 | anbi12d | |
93 | oveq2 | |
|
94 | oveq2 | |
|
95 | 94 | oveq2d | |
96 | 93 95 | eqeq12d | |
97 | oveq2 | |
|
98 | oveq2 | |
|
99 | 98 | oveq2d | |
100 | 97 99 | eqeq12d | |
101 | 96 100 | ralprg | |
102 | oveq2 | |
|
103 | oveq2 | |
|
104 | 103 | oveq2d | |
105 | 102 104 | eqeq12d | |
106 | oveq2 | |
|
107 | oveq2 | |
|
108 | 107 | oveq2d | |
109 | 106 108 | eqeq12d | |
110 | 105 109 | ralprg | |
111 | 101 110 | anbi12d | |
112 | oveq2 | |
|
113 | 94 | oveq2d | |
114 | 112 113 | eqeq12d | |
115 | oveq2 | |
|
116 | 98 | oveq2d | |
117 | 115 116 | eqeq12d | |
118 | 114 117 | ralprg | |
119 | oveq2 | |
|
120 | 103 | oveq2d | |
121 | 119 120 | eqeq12d | |
122 | oveq2 | |
|
123 | 107 | oveq2d | |
124 | 122 123 | eqeq12d | |
125 | 121 124 | ralprg | |
126 | 118 125 | anbi12d | |
127 | 111 126 | anbi12d | |
128 | 67 92 127 | 3bitrd | |
129 | 128 | 3adant3 | |
130 | 39 56 129 | mpbir2and | |
131 | 4 130 | syl | |
132 | 2 1 | eqtr2i | |
133 | 132 8 | issgrp | Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) with typecode |- |
134 | 7 131 133 | sylanbrc | Could not format ( ( # ` S ) = 2 -> M e. Smgrp ) : No typesetting found for |- ( ( # ` S ) = 2 -> M e. Smgrp ) with typecode |- |