Metamath Proof Explorer


Theorem sgrp2nmndlem4

Description: Lemma 4 for sgrp2nmnd : M is a semigroup. (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S=AB
mgm2nsgrp.b BaseM=S
sgrp2nmnd.o +M=xS,ySifx=AAB
Assertion sgrp2nmndlem4 Could not format assertion : No typesetting found for |- ( ( # ` S ) = 2 -> M e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S=AB
2 mgm2nsgrp.b BaseM=S
3 sgrp2nmnd.o +M=xS,ySifx=AAB
4 1 hashprdifel S=2ASBSAB
5 3simpa ASBSABASBS
6 1 2 3 sgrp2nmndlem1 ASBSMMgm
7 4 5 6 3syl S=2MMgm
8 eqid +M=+M
9 1 2 3 8 sgrp2nmndlem2 ASASA+MA=A
10 9 oveq1d ASASA+MA+MA=A+MA
11 9 oveq2d ASASA+MA+MA=A+MA
12 10 11 eqtr4d ASASA+MA+MA=A+MA+MA
13 12 anidms ASA+MA+MA=A+MA+MA
14 13 3ad2ant1 ASBSABA+MA+MA=A+MA+MA
15 9 anidms ASA+MA=A
16 15 adantr ASBSA+MA=A
17 16 oveq1d ASBSA+MA+MB=A+MB
18 1 2 3 8 sgrp2nmndlem2 ASBSA+MB=A
19 18 oveq2d ASBSA+MA+MB=A+MA
20 16 19 18 3eqtr4rd ASBSA+MB=A+MA+MB
21 17 20 eqtrd ASBSA+MA+MB=A+MA+MB
22 21 3adant3 ASBSABA+MA+MB=A+MA+MB
23 14 22 jca ASBSABA+MA+MA=A+MA+MAA+MA+MB=A+MA+MB
24 18 3adant3 ASBSABA+MB=A
25 1 2 3 8 sgrp2nmndlem3 ASBSABB+MA=B
26 25 oveq2d ASBSABA+MB+MA=A+MB
27 24 oveq1d ASBSABA+MB+MA=A+MA
28 15 3ad2ant1 ASBSABA+MA=A
29 27 28 eqtrd ASBSABA+MB+MA=A
30 24 26 29 3eqtr4rd ASBSABA+MB+MA=A+MB+MA
31 simp2 ASBSABBS
32 1 2 3 8 sgrp2nmndlem3 BSBSABB+MB=B
33 31 32 syld3an1 ASBSABB+MB=B
34 33 oveq2d ASBSABA+MB+MB=A+MB
35 18 oveq1d ASBSA+MB+MB=A+MB
36 35 18 eqtrd ASBSA+MB+MB=A
37 36 3adant3 ASBSABA+MB+MB=A
38 24 34 37 3eqtr4rd ASBSABA+MB+MB=A+MB+MB
39 23 30 38 jca32 ASBSABA+MA+MA=A+MA+MAA+MA+MB=A+MA+MBA+MB+MA=A+MB+MAA+MB+MB=A+MB+MB
40 25 oveq1d ASBSABB+MA+MA=B+MA
41 28 oveq2d ASBSABB+MA+MA=B+MA
42 40 41 eqtr4d ASBSABB+MA+MA=B+MA+MA
43 24 oveq2d ASBSABB+MA+MB=B+MA
44 25 oveq1d ASBSABB+MA+MB=B+MB
45 44 33 eqtrd ASBSABB+MA+MB=B
46 25 43 45 3eqtr4rd ASBSABB+MA+MB=B+MA+MB
47 42 46 jca ASBSABB+MA+MA=B+MA+MAB+MA+MB=B+MA+MB
48 25 oveq2d ASBSABB+MB+MA=B+MB
49 33 oveq1d ASBSABB+MB+MA=B+MA
50 49 25 eqtrd ASBSABB+MB+MA=B
51 33 48 50 3eqtr4rd ASBSABB+MB+MA=B+MB+MA
52 32 oveq1d BSBSABB+MB+MB=B+MB
53 32 oveq2d BSBSABB+MB+MB=B+MB
54 52 53 eqtr4d BSBSABB+MB+MB=B+MB+MB
55 31 54 syld3an1 ASBSABB+MB+MB=B+MB+MB
56 47 51 55 jca32 ASBSABB+MA+MA=B+MA+MAB+MA+MB=B+MA+MBB+MB+MA=B+MB+MAB+MB+MB=B+MB+MB
57 oveq1 a=Aa+Mb=A+Mb
58 57 oveq1d a=Aa+Mb+Mc=A+Mb+Mc
59 oveq1 a=Aa+Mb+Mc=A+Mb+Mc
60 58 59 eqeq12d a=Aa+Mb+Mc=a+Mb+McA+Mb+Mc=A+Mb+Mc
61 60 2ralbidv a=AbABcABa+Mb+Mc=a+Mb+McbABcABA+Mb+Mc=A+Mb+Mc
62 oveq1 a=Ba+Mb=B+Mb
63 62 oveq1d a=Ba+Mb+Mc=B+Mb+Mc
64 oveq1 a=Ba+Mb+Mc=B+Mb+Mc
65 63 64 eqeq12d a=Ba+Mb+Mc=a+Mb+McB+Mb+Mc=B+Mb+Mc
66 65 2ralbidv a=BbABcABa+Mb+Mc=a+Mb+McbABcABB+Mb+Mc=B+Mb+Mc
67 61 66 ralprg ASBSaABbABcABa+Mb+Mc=a+Mb+McbABcABA+Mb+Mc=A+Mb+McbABcABB+Mb+Mc=B+Mb+Mc
68 oveq2 b=AA+Mb=A+MA
69 68 oveq1d b=AA+Mb+Mc=A+MA+Mc
70 oveq1 b=Ab+Mc=A+Mc
71 70 oveq2d b=AA+Mb+Mc=A+MA+Mc
72 69 71 eqeq12d b=AA+Mb+Mc=A+Mb+McA+MA+Mc=A+MA+Mc
73 72 ralbidv b=AcABA+Mb+Mc=A+Mb+MccABA+MA+Mc=A+MA+Mc
74 oveq2 b=BA+Mb=A+MB
75 74 oveq1d b=BA+Mb+Mc=A+MB+Mc
76 oveq1 b=Bb+Mc=B+Mc
77 76 oveq2d b=BA+Mb+Mc=A+MB+Mc
78 75 77 eqeq12d b=BA+Mb+Mc=A+Mb+McA+MB+Mc=A+MB+Mc
79 78 ralbidv b=BcABA+Mb+Mc=A+Mb+MccABA+MB+Mc=A+MB+Mc
80 73 79 ralprg ASBSbABcABA+Mb+Mc=A+Mb+MccABA+MA+Mc=A+MA+MccABA+MB+Mc=A+MB+Mc
81 oveq2 b=AB+Mb=B+MA
82 81 oveq1d b=AB+Mb+Mc=B+MA+Mc
83 70 oveq2d b=AB+Mb+Mc=B+MA+Mc
84 82 83 eqeq12d b=AB+Mb+Mc=B+Mb+McB+MA+Mc=B+MA+Mc
85 84 ralbidv b=AcABB+Mb+Mc=B+Mb+MccABB+MA+Mc=B+MA+Mc
86 oveq2 b=BB+Mb=B+MB
87 86 oveq1d b=BB+Mb+Mc=B+MB+Mc
88 76 oveq2d b=BB+Mb+Mc=B+MB+Mc
89 87 88 eqeq12d b=BB+Mb+Mc=B+Mb+McB+MB+Mc=B+MB+Mc
90 89 ralbidv b=BcABB+Mb+Mc=B+Mb+MccABB+MB+Mc=B+MB+Mc
91 85 90 ralprg ASBSbABcABB+Mb+Mc=B+Mb+MccABB+MA+Mc=B+MA+MccABB+MB+Mc=B+MB+Mc
92 80 91 anbi12d ASBSbABcABA+Mb+Mc=A+Mb+McbABcABB+Mb+Mc=B+Mb+MccABA+MA+Mc=A+MA+MccABA+MB+Mc=A+MB+MccABB+MA+Mc=B+MA+MccABB+MB+Mc=B+MB+Mc
93 oveq2 c=AA+MA+Mc=A+MA+MA
94 oveq2 c=AA+Mc=A+MA
95 94 oveq2d c=AA+MA+Mc=A+MA+MA
96 93 95 eqeq12d c=AA+MA+Mc=A+MA+McA+MA+MA=A+MA+MA
97 oveq2 c=BA+MA+Mc=A+MA+MB
98 oveq2 c=BA+Mc=A+MB
99 98 oveq2d c=BA+MA+Mc=A+MA+MB
100 97 99 eqeq12d c=BA+MA+Mc=A+MA+McA+MA+MB=A+MA+MB
101 96 100 ralprg ASBScABA+MA+Mc=A+MA+McA+MA+MA=A+MA+MAA+MA+MB=A+MA+MB
102 oveq2 c=AA+MB+Mc=A+MB+MA
103 oveq2 c=AB+Mc=B+MA
104 103 oveq2d c=AA+MB+Mc=A+MB+MA
105 102 104 eqeq12d c=AA+MB+Mc=A+MB+McA+MB+MA=A+MB+MA
106 oveq2 c=BA+MB+Mc=A+MB+MB
107 oveq2 c=BB+Mc=B+MB
108 107 oveq2d c=BA+MB+Mc=A+MB+MB
109 106 108 eqeq12d c=BA+MB+Mc=A+MB+McA+MB+MB=A+MB+MB
110 105 109 ralprg ASBScABA+MB+Mc=A+MB+McA+MB+MA=A+MB+MAA+MB+MB=A+MB+MB
111 101 110 anbi12d ASBScABA+MA+Mc=A+MA+MccABA+MB+Mc=A+MB+McA+MA+MA=A+MA+MAA+MA+MB=A+MA+MBA+MB+MA=A+MB+MAA+MB+MB=A+MB+MB
112 oveq2 c=AB+MA+Mc=B+MA+MA
113 94 oveq2d c=AB+MA+Mc=B+MA+MA
114 112 113 eqeq12d c=AB+MA+Mc=B+MA+McB+MA+MA=B+MA+MA
115 oveq2 c=BB+MA+Mc=B+MA+MB
116 98 oveq2d c=BB+MA+Mc=B+MA+MB
117 115 116 eqeq12d c=BB+MA+Mc=B+MA+McB+MA+MB=B+MA+MB
118 114 117 ralprg ASBScABB+MA+Mc=B+MA+McB+MA+MA=B+MA+MAB+MA+MB=B+MA+MB
119 oveq2 c=AB+MB+Mc=B+MB+MA
120 103 oveq2d c=AB+MB+Mc=B+MB+MA
121 119 120 eqeq12d c=AB+MB+Mc=B+MB+McB+MB+MA=B+MB+MA
122 oveq2 c=BB+MB+Mc=B+MB+MB
123 107 oveq2d c=BB+MB+Mc=B+MB+MB
124 122 123 eqeq12d c=BB+MB+Mc=B+MB+McB+MB+MB=B+MB+MB
125 121 124 ralprg ASBScABB+MB+Mc=B+MB+McB+MB+MA=B+MB+MAB+MB+MB=B+MB+MB
126 118 125 anbi12d ASBScABB+MA+Mc=B+MA+MccABB+MB+Mc=B+MB+McB+MA+MA=B+MA+MAB+MA+MB=B+MA+MBB+MB+MA=B+MB+MAB+MB+MB=B+MB+MB
127 111 126 anbi12d ASBScABA+MA+Mc=A+MA+MccABA+MB+Mc=A+MB+MccABB+MA+Mc=B+MA+MccABB+MB+Mc=B+MB+McA+MA+MA=A+MA+MAA+MA+MB=A+MA+MBA+MB+MA=A+MB+MAA+MB+MB=A+MB+MBB+MA+MA=B+MA+MAB+MA+MB=B+MA+MBB+MB+MA=B+MB+MAB+MB+MB=B+MB+MB
128 67 92 127 3bitrd ASBSaABbABcABa+Mb+Mc=a+Mb+McA+MA+MA=A+MA+MAA+MA+MB=A+MA+MBA+MB+MA=A+MB+MAA+MB+MB=A+MB+MBB+MA+MA=B+MA+MAB+MA+MB=B+MA+MBB+MB+MA=B+MB+MAB+MB+MB=B+MB+MB
129 128 3adant3 ASBSABaABbABcABa+Mb+Mc=a+Mb+McA+MA+MA=A+MA+MAA+MA+MB=A+MA+MBA+MB+MA=A+MB+MAA+MB+MB=A+MB+MBB+MA+MA=B+MA+MAB+MA+MB=B+MA+MBB+MB+MA=B+MB+MAB+MB+MB=B+MB+MB
130 39 56 129 mpbir2and ASBSABaABbABcABa+Mb+Mc=a+Mb+Mc
131 4 130 syl S=2aABbABcABa+Mb+Mc=a+Mb+Mc
132 2 1 eqtr2i AB=BaseM
133 132 8 issgrp Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) with typecode |-
134 7 131 133 sylanbrc Could not format ( ( # ` S ) = 2 -> M e. Smgrp ) : No typesetting found for |- ( ( # ` S ) = 2 -> M e. Smgrp ) with typecode |-