Metamath Proof Explorer


Theorem sigaclcu2

Description: A sigma-algebra is closed under countable union - indexing on NN (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion sigaclcu2 SransigAlgebrakASkAS

Proof

Step Hyp Ref Expression
1 dfiun2g kASkA=x|kx=A
2 1 adantl SransigAlgebrakASkA=x|kx=A
3 simpl SransigAlgebrakASSransigAlgebra
4 abid xx|kx=Akx=A
5 eleq1a ASx=AxS
6 5 ralimi kASkx=AxS
7 r19.23v kx=AxSkx=AxS
8 6 7 sylib kASkx=AxS
9 8 imp kASkx=AxS
10 9 adantll SransigAlgebrakASkx=AxS
11 4 10 sylan2b SransigAlgebrakASxx|kx=AxS
12 11 ralrimiva SransigAlgebrakASxx|kx=AxS
13 nfab1 _xx|kx=A
14 nfcv _xS
15 13 14 dfss3f x|kx=ASxx|kx=AxS
16 12 15 sylibr SransigAlgebrakASx|kx=AS
17 elpw2g SransigAlgebrax|kx=A𝒫Sx|kx=AS
18 17 adantr SransigAlgebrakASx|kx=A𝒫Sx|kx=AS
19 16 18 mpbird SransigAlgebrakASx|kx=A𝒫S
20 nnct ω
21 abrexct ωx|kx=Aω
22 20 21 mp1i SransigAlgebrakASx|kx=Aω
23 sigaclcu SransigAlgebrax|kx=A𝒫Sx|kx=Aωx|kx=AS
24 3 19 22 23 syl3anc SransigAlgebrakASx|kx=AS
25 2 24 eqeltrd SransigAlgebrakASkAS