Metamath Proof Explorer


Theorem sigapisys

Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis ispisys.p P = s 𝒫 𝒫 O | fi s s
Assertion sigapisys sigAlgebra O P

Proof

Step Hyp Ref Expression
1 ispisys.p P = s 𝒫 𝒫 O | fi s s
2 sigasspw t sigAlgebra O t 𝒫 O
3 velpw t 𝒫 𝒫 O t 𝒫 O
4 2 3 sylibr t sigAlgebra O t 𝒫 𝒫 O
5 elrnsiga t sigAlgebra O t ran sigAlgebra
6 5 adantr t sigAlgebra O x 𝒫 t Fin t ran sigAlgebra
7 eldifsn x 𝒫 t Fin x 𝒫 t Fin x
8 7 biimpi x 𝒫 t Fin x 𝒫 t Fin x
9 8 adantl t sigAlgebra O x 𝒫 t Fin x 𝒫 t Fin x
10 9 simpld t sigAlgebra O x 𝒫 t Fin x 𝒫 t Fin
11 10 elin1d t sigAlgebra O x 𝒫 t Fin x 𝒫 t
12 10 elin2d t sigAlgebra O x 𝒫 t Fin x Fin
13 fict x Fin x ω
14 12 13 syl t sigAlgebra O x 𝒫 t Fin x ω
15 9 simprd t sigAlgebra O x 𝒫 t Fin x
16 sigaclci t ran sigAlgebra x 𝒫 t x ω x x t
17 6 11 14 15 16 syl22anc t sigAlgebra O x 𝒫 t Fin x t
18 17 ralrimiva t sigAlgebra O x 𝒫 t Fin x t
19 4 18 jca t sigAlgebra O t 𝒫 𝒫 O x 𝒫 t Fin x t
20 1 ispisys2 t P t 𝒫 𝒫 O x 𝒫 t Fin x t
21 19 20 sylibr t sigAlgebra O t P
22 21 ssriv sigAlgebra O P