Metamath Proof Explorer


Theorem sigapisys

Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis ispisys.p P=s𝒫𝒫O|fiss
Assertion sigapisys sigAlgebraOP

Proof

Step Hyp Ref Expression
1 ispisys.p P=s𝒫𝒫O|fiss
2 sigasspw tsigAlgebraOt𝒫O
3 velpw t𝒫𝒫Ot𝒫O
4 2 3 sylibr tsigAlgebraOt𝒫𝒫O
5 elrnsiga tsigAlgebraOtransigAlgebra
6 5 adantr tsigAlgebraOx𝒫tFintransigAlgebra
7 eldifsn x𝒫tFinx𝒫tFinx
8 7 biimpi x𝒫tFinx𝒫tFinx
9 8 adantl tsigAlgebraOx𝒫tFinx𝒫tFinx
10 9 simpld tsigAlgebraOx𝒫tFinx𝒫tFin
11 10 elin1d tsigAlgebraOx𝒫tFinx𝒫t
12 10 elin2d tsigAlgebraOx𝒫tFinxFin
13 fict xFinxω
14 12 13 syl tsigAlgebraOx𝒫tFinxω
15 9 simprd tsigAlgebraOx𝒫tFinx
16 sigaclci transigAlgebrax𝒫txωxxt
17 6 11 14 15 16 syl22anc tsigAlgebraOx𝒫tFinxt
18 17 ralrimiva tsigAlgebraOx𝒫tFinxt
19 4 18 jca tsigAlgebraOt𝒫𝒫Ox𝒫tFinxt
20 1 ispisys2 tPt𝒫𝒫Ox𝒫tFinxt
21 19 20 sylibr tsigAlgebraOtP
22 21 ssriv sigAlgebraOP