Metamath Proof Explorer


Theorem signsvtn

Description: Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
signsvf.e φEWord
signsvf.0 φE00
signsvf.f φF=E++⟨“A”⟩
signsvf.a φA
signsvf.n N=E
signsvt.b B=TEN1
Assertion signsvtn φAB<0VFVE=1

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 signsvf.e φEWord
6 signsvf.0 φE00
7 signsvf.f φF=E++⟨“A”⟩
8 signsvf.a φA
9 signsvf.n N=E
10 signsvt.b B=TEN1
11 7 fveq2d φVF=VE++⟨“A”⟩
12 1 2 3 4 signsvfn EWordE00AVE++⟨“A”⟩=VE+ifTEE1A<010
13 5 6 8 12 syl21anc φVE++⟨“A”⟩=VE+ifTEE1A<010
14 11 13 eqtrd φVF=VE+ifTEE1A<010
15 14 adantr φAB<0VF=VE+ifTEE1A<010
16 9 oveq1i N1=E1
17 16 fveq2i TEN1=TEE1
18 10 17 eqtri B=TEE1
19 18 oveq1i BA=TEE1A
20 5 adantr φAB<0EWord
21 20 eldifad φAB<0EWord
22 1 2 3 4 signstf EWordTEWord
23 wrdf TEWordTE:0..^TE
24 21 22 23 3syl φAB<0TE:0..^TE
25 eldifsn EWordEWordE
26 5 25 sylib φEWordE
27 26 adantr φAB<0EWordE
28 lennncl EWordEE
29 fzo0end EE10..^E
30 27 28 29 3syl φAB<0E10..^E
31 1 2 3 4 signstlen EWordTE=E
32 21 31 syl φAB<0TE=E
33 32 oveq2d φAB<00..^TE=0..^E
34 30 33 eleqtrrd φAB<0E10..^TE
35 24 34 ffvelcdmd φAB<0TEE1
36 18 35 eqeltrid φAB<0B
37 36 recnd φAB<0B
38 8 adantr φAB<0A
39 38 recnd φAB<0A
40 37 39 mulcomd φAB<0BA=AB
41 simpr φAB<0AB<0
42 40 41 eqbrtrd φAB<0BA<0
43 19 42 eqbrtrrid φAB<0TEE1A<0
44 43 iftrued φAB<0ifTEE1A<010=1
45 44 oveq2d φAB<0VE+ifTEE1A<010=VE+1
46 15 45 eqtr2d φAB<0VE+1=VF
47 1 2 3 4 signsvvf V:Word0
48 47 a1i φAB<0V:Word0
49 7 adantr φAB<0F=E++⟨“A”⟩
50 38 s1cld φAB<0⟨“A”⟩Word
51 ccatcl EWord⟨“A”⟩WordE++⟨“A”⟩Word
52 21 50 51 syl2anc φAB<0E++⟨“A”⟩Word
53 49 52 eqeltrd φAB<0FWord
54 48 53 ffvelcdmd φAB<0VF0
55 54 nn0cnd φAB<0VF
56 48 21 ffvelcdmd φAB<0VE0
57 56 nn0cnd φAB<0VE
58 1cnd φAB<01
59 55 57 58 subaddd φAB<0VFVE=1VE+1=VF
60 46 59 mpbird φAB<0VFVE=1