Metamath Proof Explorer


Theorem sincos6thpi

Description: The sine and cosine of _pi / 6 . (Contributed by Paul Chapman, 25-Jan-2008) (Revised by Wolf Lammen, 24-Sep-2020)

Ref Expression
Assertion sincos6thpi sinπ6=12cosπ6=32

Proof

Step Hyp Ref Expression
1 2cn 2
2 pire π
3 6re 6
4 6pos 0<6
5 3 4 gt0ne0ii 60
6 2 3 5 redivcli π6
7 6 recni π6
8 sincl π6sinπ6
9 7 8 ax-mp sinπ6
10 2ne0 20
11 recoscl π6cosπ6
12 6 11 ax-mp cosπ6
13 12 recni cosπ6
14 1 9 13 mulassi 2sinπ6cosπ6=2sinπ6cosπ6
15 sin2t π6sin2π6=2sinπ6cosπ6
16 7 15 ax-mp sin2π6=2sinπ6cosπ6
17 14 16 eqtr4i 2sinπ6cosπ6=sin2π6
18 3cn 3
19 3ne0 30
20 1 18 19 divcli 23
21 18 19 reccli 13
22 df-3 3=2+1
23 22 oveq1i 33=2+13
24 18 19 dividi 33=1
25 ax-1cn 1
26 1 25 18 19 divdiri 2+13=23+13
27 23 24 26 3eqtr3ri 23+13=1
28 sincosq1eq 231323+13=1sin23π2=cos13π2
29 20 21 27 28 mp3an sin23π2=cos13π2
30 picn π
31 1 18 30 1 19 10 divmuldivi 23π2=2π32
32 3t2e6 32=6
33 32 oveq2i 2π32=2π6
34 6cn 6
35 1 30 34 5 divassi 2π6=2π6
36 31 33 35 3eqtri 23π2=2π6
37 36 fveq2i sin23π2=sin2π6
38 29 37 eqtr3i cos13π2=sin2π6
39 25 18 30 1 19 10 divmuldivi 13π2=1π32
40 30 mullidi 1π=π
41 40 32 oveq12i 1π32=π6
42 39 41 eqtri 13π2=π6
43 42 fveq2i cos13π2=cosπ6
44 38 43 eqtr3i sin2π6=cosπ6
45 17 44 eqtri 2sinπ6cosπ6=cosπ6
46 13 mullidi 1cosπ6=cosπ6
47 45 46 eqtr4i 2sinπ6cosπ6=1cosπ6
48 1 9 mulcli 2sinπ6
49 pipos 0<π
50 2 3 49 4 divgt0ii 0<π6
51 2lt6 2<6
52 2re 2
53 2pos 0<2
54 52 53 pm3.2i 20<2
55 3 4 pm3.2i 60<6
56 2 49 pm3.2i π0<π
57 ltdiv2 20<260<6π0<π2<6π6<π2
58 54 55 56 57 mp3an 2<6π6<π2
59 51 58 mpbi π6<π2
60 0re 0
61 halfpire π2
62 rexr 00*
63 rexr π2π2*
64 elioo2 0*π2*π60π2π60<π6π6<π2
65 62 63 64 syl2an 0π2π60π2π60<π6π6<π2
66 60 61 65 mp2an π60π2π60<π6π6<π2
67 6 50 59 66 mpbir3an π60π2
68 sincosq1sgn π60π20<sinπ60<cosπ6
69 67 68 ax-mp 0<sinπ60<cosπ6
70 69 simpri 0<cosπ6
71 12 70 gt0ne0ii cosπ60
72 13 71 pm3.2i cosπ6cosπ60
73 mulcan2 2sinπ61cosπ6cosπ602sinπ6cosπ6=1cosπ62sinπ6=1
74 48 25 72 73 mp3an 2sinπ6cosπ6=1cosπ62sinπ6=1
75 47 74 mpbi 2sinπ6=1
76 1 9 10 75 mvllmuli sinπ6=12
77 3re 3
78 3pos 0<3
79 77 78 sqrtpclii 3
80 79 recni 3
81 80 1 10 sqdivi 322=3222
82 60 77 78 ltleii 03
83 77 sqsqrti 0332=3
84 82 83 ax-mp 32=3
85 sq2 22=4
86 84 85 oveq12i 3222=34
87 81 86 eqtri 322=34
88 87 fveq2i 322=34
89 77 sqrtge0i 0303
90 82 89 ax-mp 03
91 79 52 divge0i 030<2032
92 90 53 91 mp2an 032
93 79 52 10 redivcli 32
94 93 sqrtsqi 032322=32
95 92 94 ax-mp 322=32
96 4cn 4
97 4ne0 40
98 96 97 dividi 44=1
99 98 oveq1i 4414=114
100 96 97 pm3.2i 440
101 divsubdir 41440414=4414
102 96 25 100 101 mp3an 414=4414
103 4m1e3 41=3
104 103 oveq1i 414=34
105 102 104 eqtr3i 4414=34
106 96 97 reccli 14
107 13 sqcli cosπ62
108 76 oveq1i sinπ62=122
109 1 10 sqrecii 122=122
110 85 oveq2i 122=14
111 108 109 110 3eqtri sinπ62=14
112 111 oveq1i sinπ62+cosπ62=14+cosπ62
113 sincossq π6sinπ62+cosπ62=1
114 7 113 ax-mp sinπ62+cosπ62=1
115 112 114 eqtr3i 14+cosπ62=1
116 25 106 107 115 subaddrii 114=cosπ62
117 99 105 116 3eqtr3ri cosπ62=34
118 117 fveq2i cosπ62=34
119 60 12 70 ltleii 0cosπ6
120 12 sqrtsqi 0cosπ6cosπ62=cosπ6
121 119 120 ax-mp cosπ62=cosπ6
122 118 121 eqtr3i 34=cosπ6
123 88 95 122 3eqtr3ri cosπ6=32
124 76 123 pm3.2i sinπ6=12cosπ6=32