Metamath Proof Explorer


Theorem sincosq2sgn

Description: The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion sincosq2sgn Aπ2π0<sinAcosA<0

Proof

Step Hyp Ref Expression
1 halfpire π2
2 pire π
3 rexr π2π2*
4 rexr ππ*
5 elioo2 π2*π*Aπ2πAπ2<AA<π
6 3 4 5 syl2an π2πAπ2πAπ2<AA<π
7 1 2 6 mp2an Aπ2πAπ2<AA<π
8 resubcl Aπ2Aπ2
9 1 8 mpan2 AAπ2
10 0xr 0*
11 1 rexri π2*
12 elioo2 0*π2*Aπ20π2Aπ20<Aπ2Aπ2<π2
13 10 11 12 mp2an Aπ20π2Aπ20<Aπ2Aπ2<π2
14 sincosq1sgn Aπ20π20<sinAπ20<cosAπ2
15 13 14 sylbir Aπ20<Aπ2Aπ2<π20<sinAπ20<cosAπ2
16 9 15 syl3an1 A0<Aπ2Aπ2<π20<sinAπ20<cosAπ2
17 16 3expib A0<Aπ2Aπ2<π20<sinAπ20<cosAπ2
18 0re 0
19 ltsub13 0Aπ20<Aπ2π2<A0
20 18 1 19 mp3an13 A0<Aπ2π2<A0
21 recn AA
22 21 subid1d AA0=A
23 22 breq2d Aπ2<A0π2<A
24 20 23 bitrd A0<Aπ2π2<A
25 ltsubadd Aπ2π2Aπ2<π2A<π2+π2
26 1 1 25 mp3an23 AAπ2<π2A<π2+π2
27 pidiv2halves π2+π2=π
28 27 breq2i A<π2+π2A<π
29 26 28 bitrdi AAπ2<π2A<π
30 24 29 anbi12d A0<Aπ2Aπ2<π2π2<AA<π
31 9 resincld AsinAπ2
32 31 lt0neg2d A0<sinAπ2sinAπ2<0
33 32 anbi1d A0<sinAπ20<cosAπ2sinAπ2<00<cosAπ2
34 17 30 33 3imtr3d Aπ2<AA<πsinAπ2<00<cosAπ2
35 1 recni π2
36 pncan3 π2Aπ2+A-π2=A
37 35 21 36 sylancr Aπ2+A-π2=A
38 37 fveq2d Acosπ2+A-π2=cosA
39 9 recnd AAπ2
40 coshalfpip Aπ2cosπ2+A-π2=sinAπ2
41 39 40 syl Acosπ2+A-π2=sinAπ2
42 38 41 eqtr3d AcosA=sinAπ2
43 42 breq1d AcosA<0sinAπ2<0
44 37 fveq2d Asinπ2+A-π2=sinA
45 sinhalfpip Aπ2sinπ2+A-π2=cosAπ2
46 39 45 syl Asinπ2+A-π2=cosAπ2
47 44 46 eqtr3d AsinA=cosAπ2
48 47 breq2d A0<sinA0<cosAπ2
49 43 48 anbi12d AcosA<00<sinAsinAπ2<00<cosAπ2
50 34 49 sylibrd Aπ2<AA<πcosA<00<sinA
51 50 3impib Aπ2<AA<πcosA<00<sinA
52 51 ancomd Aπ2<AA<π0<sinAcosA<0
53 7 52 sylbi Aπ2π0<sinAcosA<0