Description: Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smat.s | |
|
smat.m | |
||
smat.n | |
||
smat.k | |
||
smat.l | |
||
smat.a | |
||
smatlem.i | |
||
smatlem.j | |
||
smatlem.1 | |
||
smatlem.2 | |
||
Assertion | smatlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smat.s | |
|
2 | smat.m | |
|
3 | smat.n | |
|
4 | smat.k | |
|
5 | smat.l | |
|
6 | smat.a | |
|
7 | smatlem.i | |
|
8 | smatlem.j | |
|
9 | smatlem.1 | |
|
10 | smatlem.2 | |
|
11 | fz1ssnn | |
|
12 | 11 4 | sselid | |
13 | fz1ssnn | |
|
14 | 13 5 | sselid | |
15 | smatfval | |
|
16 | 12 14 6 15 | syl3anc | |
17 | 1 16 | eqtrid | |
18 | 17 | oveqd | |
19 | df-ov | |
|
20 | 18 19 | eqtrdi | |
21 | 7 8 | jca | |
22 | opelxp | |
|
23 | 21 22 | sylibr | |
24 | eqid | |
|
25 | opex | |
|
26 | 24 25 | dmmpo | |
27 | 23 26 | eleqtrrdi | |
28 | 24 | mpofun | |
29 | fvco | |
|
30 | 28 29 | mpan | |
31 | 27 30 | syl | |
32 | 20 31 | eqtrd | |
33 | df-ov | |
|
34 | breq1 | |
|
35 | id | |
|
36 | oveq1 | |
|
37 | 34 35 36 | ifbieq12d | |
38 | 37 | opeq1d | |
39 | breq1 | |
|
40 | id | |
|
41 | oveq1 | |
|
42 | 39 40 41 | ifbieq12d | |
43 | 42 | opeq2d | |
44 | opex | |
|
45 | 38 43 24 44 | ovmpo | |
46 | 21 45 | syl | |
47 | 9 10 | opeq12d | |
48 | 46 47 | eqtrd | |
49 | 33 48 | eqtr3id | |
50 | 49 | fveq2d | |
51 | df-ov | |
|
52 | 50 51 | eqtr4di | |
53 | 32 52 | eqtrd | |