Metamath Proof Explorer


Theorem smatlem

Description: Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S=KsubMat1AL
smat.m φM
smat.n φN
smat.k φK1M
smat.l φL1N
smat.a φAB1M×1N
smatlem.i φI
smatlem.j φJ
smatlem.1 φifI<KII+1=X
smatlem.2 φifJ<LJJ+1=Y
Assertion smatlem φISJ=XAY

Proof

Step Hyp Ref Expression
1 smat.s S=KsubMat1AL
2 smat.m φM
3 smat.n φN
4 smat.k φK1M
5 smat.l φL1N
6 smat.a φAB1M×1N
7 smatlem.i φI
8 smatlem.j φJ
9 smatlem.1 φifI<KII+1=X
10 smatlem.2 φifJ<LJJ+1=Y
11 fz1ssnn 1M
12 11 4 sselid φK
13 fz1ssnn 1N
14 13 5 sselid φL
15 smatfval KLAB1M×1NKsubMat1AL=Ai,jifi<Kii+1ifj<Ljj+1
16 12 14 6 15 syl3anc φKsubMat1AL=Ai,jifi<Kii+1ifj<Ljj+1
17 1 16 eqtrid φS=Ai,jifi<Kii+1ifj<Ljj+1
18 17 oveqd φISJ=IAi,jifi<Kii+1ifj<Ljj+1J
19 df-ov IAi,jifi<Kii+1ifj<Ljj+1J=Ai,jifi<Kii+1ifj<Ljj+1IJ
20 18 19 eqtrdi φISJ=Ai,jifi<Kii+1ifj<Ljj+1IJ
21 7 8 jca φIJ
22 opelxp IJ×IJ
23 21 22 sylibr φIJ×
24 eqid i,jifi<Kii+1ifj<Ljj+1=i,jifi<Kii+1ifj<Ljj+1
25 opex ifi<Kii+1ifj<Ljj+1V
26 24 25 dmmpo domi,jifi<Kii+1ifj<Ljj+1=×
27 23 26 eleqtrrdi φIJdomi,jifi<Kii+1ifj<Ljj+1
28 24 mpofun Funi,jifi<Kii+1ifj<Ljj+1
29 fvco Funi,jifi<Kii+1ifj<Ljj+1IJdomi,jifi<Kii+1ifj<Ljj+1Ai,jifi<Kii+1ifj<Ljj+1IJ=Ai,jifi<Kii+1ifj<Ljj+1IJ
30 28 29 mpan IJdomi,jifi<Kii+1ifj<Ljj+1Ai,jifi<Kii+1ifj<Ljj+1IJ=Ai,jifi<Kii+1ifj<Ljj+1IJ
31 27 30 syl φAi,jifi<Kii+1ifj<Ljj+1IJ=Ai,jifi<Kii+1ifj<Ljj+1IJ
32 20 31 eqtrd φISJ=Ai,jifi<Kii+1ifj<Ljj+1IJ
33 df-ov Ii,jifi<Kii+1ifj<Ljj+1J=i,jifi<Kii+1ifj<Ljj+1IJ
34 breq1 i=Ii<KI<K
35 id i=Ii=I
36 oveq1 i=Ii+1=I+1
37 34 35 36 ifbieq12d i=Iifi<Kii+1=ifI<KII+1
38 37 opeq1d i=Iifi<Kii+1ifj<Ljj+1=ifI<KII+1ifj<Ljj+1
39 breq1 j=Jj<LJ<L
40 id j=Jj=J
41 oveq1 j=Jj+1=J+1
42 39 40 41 ifbieq12d j=Jifj<Ljj+1=ifJ<LJJ+1
43 42 opeq2d j=JifI<KII+1ifj<Ljj+1=ifI<KII+1ifJ<LJJ+1
44 opex ifI<KII+1ifJ<LJJ+1V
45 38 43 24 44 ovmpo IJIi,jifi<Kii+1ifj<Ljj+1J=ifI<KII+1ifJ<LJJ+1
46 21 45 syl φIi,jifi<Kii+1ifj<Ljj+1J=ifI<KII+1ifJ<LJJ+1
47 9 10 opeq12d φifI<KII+1ifJ<LJJ+1=XY
48 46 47 eqtrd φIi,jifi<Kii+1ifj<Ljj+1J=XY
49 33 48 eqtr3id φi,jifi<Kii+1ifj<Ljj+1IJ=XY
50 49 fveq2d φAi,jifi<Kii+1ifj<Ljj+1IJ=AXY
51 df-ov XAY=AXY
52 50 51 eqtr4di φAi,jifi<Kii+1ifj<Ljj+1IJ=XAY
53 32 52 eqtrd φISJ=XAY