Metamath Proof Explorer


Theorem spanunsni

Description: The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses spanunsn.1 AC
spanunsn.2 B
Assertion spanunsni spanAB=spanAprojAB

Proof

Step Hyp Ref Expression
1 spanunsn.1 AC
2 spanunsn.2 B
3 1 chshii AS
4 snssi BB
5 spancl BspanBS
6 2 4 5 mp2b spanBS
7 3 6 shseli xA+spanByAzspanBx=y+z
8 2 elspansni zspanBwz=wB
9 1 2 pjclii projABA
10 shmulcl ASwprojABAwprojABA
11 3 9 10 mp3an13 wwprojABA
12 shaddcl ASyAwprojABAy+wprojABA
13 11 12 syl3an3 ASyAwy+wprojABA
14 3 13 mp3an1 yAwy+wprojABA
15 1 choccli AC
16 15 2 pjhclii projAB
17 spansnmul projABwwprojABspanprojAB
18 16 17 mpan wwprojABspanprojAB
19 18 adantl yAwwprojABspanprojAB
20 1 2 pjpji B=projAB+projAB
21 20 oveq2i wB=wprojAB+projAB
22 1 2 pjhclii projAB
23 ax-hvdistr1 wprojABprojABwprojAB+projAB=wprojAB+wprojAB
24 22 16 23 mp3an23 wwprojAB+projAB=wprojAB+wprojAB
25 21 24 eqtrid wwB=wprojAB+wprojAB
26 25 adantl yAwwB=wprojAB+wprojAB
27 26 oveq2d yAwy+wB=y+wprojAB+wprojAB
28 1 cheli yAy
29 hvmulcl wprojABwprojAB
30 22 29 mpan2 wwprojAB
31 hvmulcl wprojABwprojAB
32 16 31 mpan2 wwprojAB
33 30 32 jca wwprojABwprojAB
34 ax-hvass ywprojABwprojABy+wprojAB+wprojAB=y+wprojAB+wprojAB
35 34 3expb ywprojABwprojABy+wprojAB+wprojAB=y+wprojAB+wprojAB
36 28 33 35 syl2an yAwy+wprojAB+wprojAB=y+wprojAB+wprojAB
37 27 36 eqtr4d yAwy+wB=y+wprojAB+wprojAB
38 rspceov y+wprojABAwprojABspanprojABy+wB=y+wprojAB+wprojABvAuspanprojABy+wB=v+u
39 14 19 37 38 syl3anc yAwvAuspanprojABy+wB=v+u
40 snssi projABprojAB
41 spancl projABspanprojABS
42 16 40 41 mp2b spanprojABS
43 3 42 shseli y+wBA+spanprojABvAuspanprojABy+wB=v+u
44 39 43 sylibr yAwy+wBA+spanprojAB
45 oveq2 z=wBy+z=y+wB
46 45 eqeq2d z=wBx=y+zx=y+wB
47 46 biimpa z=wBx=y+zx=y+wB
48 eleq1 x=y+wBxA+spanprojABy+wBA+spanprojAB
49 48 biimparc y+wBA+spanprojABx=y+wBxA+spanprojAB
50 44 47 49 syl2an yAwz=wBx=y+zxA+spanprojAB
51 50 exp43 yAwz=wBx=y+zxA+spanprojAB
52 51 rexlimdv yAwz=wBx=y+zxA+spanprojAB
53 8 52 biimtrid yAzspanBx=y+zxA+spanprojAB
54 53 rexlimdv yAzspanBx=y+zxA+spanprojAB
55 54 rexlimiv yAzspanBx=y+zxA+spanprojAB
56 7 55 sylbi xA+spanBxA+spanprojAB
57 3 42 shseli xA+spanprojAByAzspanprojABx=y+z
58 16 elspansni zspanprojABwz=wprojAB
59 negcl ww
60 shmulcl ASwprojABAwprojABA
61 3 9 60 mp3an13 wwprojABA
62 59 61 syl wwprojABA
63 shaddcl ASwprojABAyAwprojAB+yA
64 62 63 syl3an2 ASwyAwprojAB+yA
65 3 64 mp3an1 wyAwprojAB+yA
66 65 ancoms yAwwprojAB+yA
67 spansnmul BwwBspanB
68 2 67 mpan wwBspanB
69 68 adantl yAwwBspanB
70 hvm1neg wprojAB-1wprojAB=wprojAB
71 22 70 mpan2 w-1wprojAB=wprojAB
72 71 oveq2d wwprojAB+-1wprojAB=wprojAB+wprojAB
73 hvnegid wprojABwprojAB+-1wprojAB=0
74 30 73 syl wwprojAB+-1wprojAB=0
75 hvmulcl wprojABwprojAB
76 59 22 75 sylancl wwprojAB
77 ax-hvcom wprojABwprojABwprojAB+wprojAB=wprojAB+wprojAB
78 30 76 77 syl2anc wwprojAB+wprojAB=wprojAB+wprojAB
79 72 74 78 3eqtr3d w0=wprojAB+wprojAB
80 79 adantl yAw0=wprojAB+wprojAB
81 80 oveq1d yAw0+y+wprojAB=wprojAB+wprojAB+y+wprojAB
82 hvaddcl ywprojABy+wprojAB
83 28 32 82 syl2an yAwy+wprojAB
84 hvaddlid y+wprojAB0+y+wprojAB=y+wprojAB
85 83 84 syl yAw0+y+wprojAB=y+wprojAB
86 76 30 jca wwprojABwprojAB
87 86 adantl yAwwprojABwprojAB
88 28 32 anim12i yAwywprojAB
89 hvadd4 wprojABwprojABywprojABwprojAB+wprojAB+y+wprojAB=wprojAB+y+wprojAB+wprojAB
90 87 88 89 syl2anc yAwwprojAB+wprojAB+y+wprojAB=wprojAB+y+wprojAB+wprojAB
91 81 85 90 3eqtr3d yAwy+wprojAB=wprojAB+y+wprojAB+wprojAB
92 26 oveq2d yAwwprojAB+y+wB=wprojAB+y+wprojAB+wprojAB
93 91 92 eqtr4d yAwy+wprojAB=wprojAB+y+wB
94 rspceov wprojAB+yAwBspanBy+wprojAB=wprojAB+y+wBvAuspanBy+wprojAB=v+u
95 66 69 93 94 syl3anc yAwvAuspanBy+wprojAB=v+u
96 3 6 shseli y+wprojABA+spanBvAuspanBy+wprojAB=v+u
97 95 96 sylibr yAwy+wprojABA+spanB
98 oveq2 z=wprojABy+z=y+wprojAB
99 98 eqeq2d z=wprojABx=y+zx=y+wprojAB
100 99 biimpa z=wprojABx=y+zx=y+wprojAB
101 eleq1 x=y+wprojABxA+spanBy+wprojABA+spanB
102 101 biimparc y+wprojABA+spanBx=y+wprojABxA+spanB
103 97 100 102 syl2an yAwz=wprojABx=y+zxA+spanB
104 103 exp43 yAwz=wprojABx=y+zxA+spanB
105 104 rexlimdv yAwz=wprojABx=y+zxA+spanB
106 58 105 biimtrid yAzspanprojABx=y+zxA+spanB
107 106 rexlimdv yAzspanprojABx=y+zxA+spanB
108 107 rexlimiv yAzspanprojABx=y+zxA+spanB
109 57 108 sylbi xA+spanprojABxA+spanB
110 56 109 impbii xA+spanBxA+spanprojAB
111 110 eqriv A+spanB=A+spanprojAB
112 1 chssii A
113 2 4 ax-mp B
114 112 113 spanuni spanAB=spanA+spanB
115 spanid ASspanA=A
116 3 115 ax-mp spanA=A
117 116 oveq1i spanA+spanB=A+spanB
118 114 117 eqtri spanAB=A+spanB
119 16 40 ax-mp projAB
120 112 119 spanuni spanAprojAB=spanA+spanprojAB
121 116 oveq1i spanA+spanprojAB=A+spanprojAB
122 120 121 eqtri spanAprojAB=A+spanprojAB
123 111 118 122 3eqtr4i spanAB=spanAprojAB