Metamath Proof Explorer


Theorem splfv2a

Description: Symbols within the replacement region of a splice, expressed using the coordinates of the replacement region. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 15-Oct-2022)

Ref Expression
Hypotheses spllen.s φSWordA
spllen.f φF0T
spllen.t φT0S
spllen.r φRWordA
splfv2a.x φX0..^R
Assertion splfv2a φSspliceFTRF+X=RX

Proof

Step Hyp Ref Expression
1 spllen.s φSWordA
2 spllen.f φF0T
3 spllen.t φT0S
4 spllen.r φRWordA
5 splfv2a.x φX0..^R
6 splval SWordAF0TT0SRWordASspliceFTR=SprefixF++R++SsubstrTS
7 1 2 3 4 6 syl13anc φSspliceFTR=SprefixF++R++SsubstrTS
8 elfznn0 F0TF0
9 2 8 syl φF0
10 9 nn0cnd φF
11 elfzonn0 X0..^RX0
12 5 11 syl φX0
13 12 nn0cnd φX
14 10 13 addcomd φF+X=X+F
15 nn0uz 0=0
16 9 15 eleqtrdi φF0
17 elfzuz3 T0SST
18 3 17 syl φST
19 elfzuz3 F0TTF
20 2 19 syl φTF
21 uztrn STTFSF
22 18 20 21 syl2anc φSF
23 elfzuzb F0SF0SF
24 16 22 23 sylanbrc φF0S
25 pfxlen SWordAF0SSprefixF=F
26 1 24 25 syl2anc φSprefixF=F
27 26 oveq2d φX+SprefixF=X+F
28 14 27 eqtr4d φF+X=X+SprefixF
29 7 28 fveq12d φSspliceFTRF+X=SprefixF++R++SsubstrTSX+SprefixF
30 pfxcl SWordASprefixFWordA
31 1 30 syl φSprefixFWordA
32 ccatcl SprefixFWordARWordASprefixF++RWordA
33 31 4 32 syl2anc φSprefixF++RWordA
34 swrdcl SWordASsubstrTSWordA
35 1 34 syl φSsubstrTSWordA
36 0nn0 00
37 nn0addcl 00F00+F0
38 36 9 37 sylancr φ0+F0
39 fzoss1 0+F00+F..^R+F0..^R+F
40 39 15 eleq2s 0+F00+F..^R+F0..^R+F
41 38 40 syl φ0+F..^R+F0..^R+F
42 ccatlen SprefixFWordARWordASprefixF++R=SprefixF+R
43 31 4 42 syl2anc φSprefixF++R=SprefixF+R
44 26 oveq1d φSprefixF+R=F+R
45 lencl RWordAR0
46 4 45 syl φR0
47 46 nn0cnd φR
48 10 47 addcomd φF+R=R+F
49 43 44 48 3eqtrd φSprefixF++R=R+F
50 49 oveq2d φ0..^SprefixF++R=0..^R+F
51 41 50 sseqtrrd φ0+F..^R+F0..^SprefixF++R
52 9 nn0zd φF
53 fzoaddel X0..^RFX+F0+F..^R+F
54 5 52 53 syl2anc φX+F0+F..^R+F
55 51 54 sseldd φX+F0..^SprefixF++R
56 27 55 eqeltrd φX+SprefixF0..^SprefixF++R
57 ccatval1 SprefixF++RWordASsubstrTSWordAX+SprefixF0..^SprefixF++RSprefixF++R++SsubstrTSX+SprefixF=SprefixF++RX+SprefixF
58 33 35 56 57 syl3anc φSprefixF++R++SsubstrTSX+SprefixF=SprefixF++RX+SprefixF
59 ccatval3 SprefixFWordARWordAX0..^RSprefixF++RX+SprefixF=RX
60 31 4 5 59 syl3anc φSprefixF++RX+SprefixF=RX
61 29 58 60 3eqtrd φSspliceFTRF+X=RX