Description: The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srabn.a | |
|
srabn.j | |
||
Assertion | srabn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srabn.a | |
|
2 | srabn.j | |
|
3 | simp2 | |
|
4 | eqidd | |
|
5 | 1 | a1i | |
6 | eqid | |
|
7 | 6 | subrgss | |
8 | 7 | 3ad2ant3 | |
9 | 5 8 | srabase | |
10 | 5 8 | srads | |
11 | 10 | reseq1d | |
12 | 5 8 | sratopn | |
13 | 4 9 11 12 | cmspropd | |
14 | 3 13 | mpbid | |
15 | eqid | |
|
16 | 15 | isbn | |
17 | 3anrot | |
|
18 | 3anass | |
|
19 | 16 17 18 | 3bitri | |
20 | 19 | baib | |
21 | 14 20 | syl | |
22 | 5 8 | srasca | |
23 | 22 | eleq1d | |
24 | eqid | |
|
25 | 24 6 2 | cmsss | |
26 | 3 8 25 | syl2anc | |
27 | 23 26 | bitr3d | |
28 | 1 | sranlm | |
29 | 28 | 3adant2 | |
30 | 15 | isnvc2 | |
31 | 30 | baib | |
32 | 29 31 | syl | |
33 | 22 | eleq1d | |
34 | 32 33 | bitr4d | |
35 | 27 34 | anbi12d | |
36 | 21 35 | bitrd | |