Metamath Proof Explorer


Theorem srabn

Description: The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses srabn.a A=subringAlgWS
srabn.j J=TopOpenW
Assertion srabn WNrmRingWCMetSpSSubRingWABanSClsdJW𝑠SDivRing

Proof

Step Hyp Ref Expression
1 srabn.a A=subringAlgWS
2 srabn.j J=TopOpenW
3 simp2 WNrmRingWCMetSpSSubRingWWCMetSp
4 eqidd WNrmRingWCMetSpSSubRingWBaseW=BaseW
5 1 a1i WNrmRingWCMetSpSSubRingWA=subringAlgWS
6 eqid BaseW=BaseW
7 6 subrgss SSubRingWSBaseW
8 7 3ad2ant3 WNrmRingWCMetSpSSubRingWSBaseW
9 5 8 srabase WNrmRingWCMetSpSSubRingWBaseW=BaseA
10 5 8 srads WNrmRingWCMetSpSSubRingWdistW=distA
11 10 reseq1d WNrmRingWCMetSpSSubRingWdistWBaseW×BaseW=distABaseW×BaseW
12 5 8 sratopn WNrmRingWCMetSpSSubRingWTopOpenW=TopOpenA
13 4 9 11 12 cmspropd WNrmRingWCMetSpSSubRingWWCMetSpACMetSp
14 3 13 mpbid WNrmRingWCMetSpSSubRingWACMetSp
15 eqid ScalarA=ScalarA
16 15 isbn ABanANrmVecACMetSpScalarACMetSp
17 3anrot ANrmVecACMetSpScalarACMetSpACMetSpScalarACMetSpANrmVec
18 3anass ACMetSpScalarACMetSpANrmVecACMetSpScalarACMetSpANrmVec
19 16 17 18 3bitri ABanACMetSpScalarACMetSpANrmVec
20 19 baib ACMetSpABanScalarACMetSpANrmVec
21 14 20 syl WNrmRingWCMetSpSSubRingWABanScalarACMetSpANrmVec
22 5 8 srasca WNrmRingWCMetSpSSubRingWW𝑠S=ScalarA
23 22 eleq1d WNrmRingWCMetSpSSubRingWW𝑠SCMetSpScalarACMetSp
24 eqid W𝑠S=W𝑠S
25 24 6 2 cmsss WCMetSpSBaseWW𝑠SCMetSpSClsdJ
26 3 8 25 syl2anc WNrmRingWCMetSpSSubRingWW𝑠SCMetSpSClsdJ
27 23 26 bitr3d WNrmRingWCMetSpSSubRingWScalarACMetSpSClsdJ
28 1 sranlm WNrmRingSSubRingWANrmMod
29 28 3adant2 WNrmRingWCMetSpSSubRingWANrmMod
30 15 isnvc2 ANrmVecANrmModScalarADivRing
31 30 baib ANrmModANrmVecScalarADivRing
32 29 31 syl WNrmRingWCMetSpSSubRingWANrmVecScalarADivRing
33 22 eleq1d WNrmRingWCMetSpSSubRingWW𝑠SDivRingScalarADivRing
34 32 33 bitr4d WNrmRingWCMetSpSSubRingWANrmVecW𝑠SDivRing
35 27 34 anbi12d WNrmRingWCMetSpSSubRingWScalarACMetSpANrmVecSClsdJW𝑠SDivRing
36 21 35 bitrd WNrmRingWCMetSpSSubRingWABanSClsdJW𝑠SDivRing