Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm . (Contributed by AV, 23-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srglmhm.b | |
|
srglmhm.t | |
||
Assertion | srglmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srglmhm.b | |
|
2 | srglmhm.t | |
|
3 | srgmnd | |
|
4 | 3 3 | jca | |
5 | 4 | adantr | |
6 | 1 2 | srgcl | |
7 | 6 | 3expa | |
8 | 7 | fmpttd | |
9 | 3anass | |
|
10 | eqid | |
|
11 | 1 10 2 | srgdi | |
12 | 9 11 | sylan2br | |
13 | 12 | anassrs | |
14 | 1 10 | srgacl | |
15 | 14 | 3expb | |
16 | 15 | adantlr | |
17 | oveq2 | |
|
18 | eqid | |
|
19 | ovex | |
|
20 | 17 18 19 | fvmpt | |
21 | 16 20 | syl | |
22 | oveq2 | |
|
23 | ovex | |
|
24 | 22 18 23 | fvmpt | |
25 | oveq2 | |
|
26 | ovex | |
|
27 | 25 18 26 | fvmpt | |
28 | 24 27 | oveqan12d | |
29 | 28 | adantl | |
30 | 13 21 29 | 3eqtr4d | |
31 | 30 | ralrimivva | |
32 | eqid | |
|
33 | 1 32 | srg0cl | |
34 | 33 | adantr | |
35 | oveq2 | |
|
36 | ovex | |
|
37 | 35 18 36 | fvmpt | |
38 | 34 37 | syl | |
39 | 1 2 32 | srgrz | |
40 | 38 39 | eqtrd | |
41 | 8 31 40 | 3jca | |
42 | 1 1 10 10 32 32 | ismhm | |
43 | 5 41 42 | sylanbrc | |