Metamath Proof Explorer


Theorem srglmhm

Description: Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm . (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srglmhm.b B=BaseR
srglmhm.t ·˙=R
Assertion srglmhm RSRingXBxBX·˙xRMndHomR

Proof

Step Hyp Ref Expression
1 srglmhm.b B=BaseR
2 srglmhm.t ·˙=R
3 srgmnd RSRingRMnd
4 3 3 jca RSRingRMndRMnd
5 4 adantr RSRingXBRMndRMnd
6 1 2 srgcl RSRingXBxBX·˙xB
7 6 3expa RSRingXBxBX·˙xB
8 7 fmpttd RSRingXBxBX·˙x:BB
9 3anass XBaBbBXBaBbB
10 eqid +R=+R
11 1 10 2 srgdi RSRingXBaBbBX·˙a+Rb=X·˙a+RX·˙b
12 9 11 sylan2br RSRingXBaBbBX·˙a+Rb=X·˙a+RX·˙b
13 12 anassrs RSRingXBaBbBX·˙a+Rb=X·˙a+RX·˙b
14 1 10 srgacl RSRingaBbBa+RbB
15 14 3expb RSRingaBbBa+RbB
16 15 adantlr RSRingXBaBbBa+RbB
17 oveq2 x=a+RbX·˙x=X·˙a+Rb
18 eqid xBX·˙x=xBX·˙x
19 ovex X·˙a+RbV
20 17 18 19 fvmpt a+RbBxBX·˙xa+Rb=X·˙a+Rb
21 16 20 syl RSRingXBaBbBxBX·˙xa+Rb=X·˙a+Rb
22 oveq2 x=aX·˙x=X·˙a
23 ovex X·˙aV
24 22 18 23 fvmpt aBxBX·˙xa=X·˙a
25 oveq2 x=bX·˙x=X·˙b
26 ovex X·˙bV
27 25 18 26 fvmpt bBxBX·˙xb=X·˙b
28 24 27 oveqan12d aBbBxBX·˙xa+RxBX·˙xb=X·˙a+RX·˙b
29 28 adantl RSRingXBaBbBxBX·˙xa+RxBX·˙xb=X·˙a+RX·˙b
30 13 21 29 3eqtr4d RSRingXBaBbBxBX·˙xa+Rb=xBX·˙xa+RxBX·˙xb
31 30 ralrimivva RSRingXBaBbBxBX·˙xa+Rb=xBX·˙xa+RxBX·˙xb
32 eqid 0R=0R
33 1 32 srg0cl RSRing0RB
34 33 adantr RSRingXB0RB
35 oveq2 x=0RX·˙x=X·˙0R
36 ovex X·˙0RV
37 35 18 36 fvmpt 0RBxBX·˙x0R=X·˙0R
38 34 37 syl RSRingXBxBX·˙x0R=X·˙0R
39 1 2 32 srgrz RSRingXBX·˙0R=0R
40 38 39 eqtrd RSRingXBxBX·˙x0R=0R
41 8 31 40 3jca RSRingXBxBX·˙x:BBaBbBxBX·˙xa+Rb=xBX·˙xa+RxBX·˙xbxBX·˙x0R=0R
42 1 1 10 10 32 32 ismhm xBX·˙xRMndHomRRMndRMndxBX·˙x:BBaBbBxBX·˙xa+Rb=xBX·˙xa+RxBX·˙xbxBX·˙x0R=0R
43 5 41 42 sylanbrc RSRingXBxBX·˙xRMndHomR