Metamath Proof Explorer


Theorem ssuzfz

Description: A finite subset of the upper integers is a subset of a finite set of sequential integers. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ssuzfz.1 Z=M
ssuzfz.2 φAZ
ssuzfz.3 φAFin
Assertion ssuzfz φAMsupA<

Proof

Step Hyp Ref Expression
1 ssuzfz.1 Z=M
2 ssuzfz.2 φAZ
3 ssuzfz.3 φAFin
4 2 sselda φkAkZ
5 4 1 eleqtrdi φkAkM
6 eluzel2 kMM
7 5 6 syl φkAM
8 uzssz M
9 1 8 eqsstri Z
10 9 a1i φZ
11 2 10 sstrd φA
12 11 adantr φkAA
13 ne0i kAA
14 13 adantl φkAA
15 3 adantr φkAAFin
16 suprfinzcl AAAFinsupA<A
17 12 14 15 16 syl3anc φkAsupA<A
18 12 17 sseldd φkAsupA<
19 11 sselda φkAk
20 eluzle kMMk
21 5 20 syl φkAMk
22 zssre
23 22 a1i φ
24 11 23 sstrd φA
25 24 adantr φkAA
26 simpr φkAkA
27 eqidd φkAsupA<=supA<
28 25 15 26 27 supfirege φkAksupA<
29 7 18 19 21 28 elfzd φkAkMsupA<
30 29 ex φkAkMsupA<
31 30 ralrimiv φkAkMsupA<
32 dfss3 AMsupA<kAkMsupA<
33 31 32 sylibr φAMsupA<