Metamath Proof Explorer


Theorem sticksstones20

Description: Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakung, 24-Oct-2024)

Ref Expression
Hypotheses sticksstones20.1 φN0
sticksstones20.2 φSFin
sticksstones20.3 φK
sticksstones20.4 A=g|g:1K0i=1Kgi=N
sticksstones20.5 B=h|h:S0iShi=N
sticksstones20.6 φS=K
Assertion sticksstones20 φB=(N+K-1K1)

Proof

Step Hyp Ref Expression
1 sticksstones20.1 φN0
2 sticksstones20.2 φSFin
3 sticksstones20.3 φK
4 sticksstones20.4 A=g|g:1K0i=1Kgi=N
5 sticksstones20.5 B=h|h:S0iShi=N
6 sticksstones20.6 φS=K
7 isfinite4 SFin1SS
8 bren 1SSpp:1S1-1 ontoS
9 7 8 sylbb SFinpp:1S1-1 ontoS
10 2 9 syl φpp:1S1-1 ontoS
11 6 oveq2d φ1S=1K
12 11 f1oeq2d φp:1S1-1 ontoSp:1K1-1 ontoS
13 12 biimpd φp:1S1-1 ontoSp:1K1-1 ontoS
14 13 eximdv φpp:1S1-1 ontoSpp:1K1-1 ontoS
15 10 14 mpd φpp:1K1-1 ontoS
16 4 a1i φA=g|g:1K0i=1Kgi=N
17 fzfid φ1KFin
18 nn0ex 0V
19 18 a1i φ0V
20 mapex 1KFin0Vg|g:1K0V
21 17 19 20 syl2anc φg|g:1K0V
22 simprl φg:1K0i=1Kgi=Ng:1K0
23 22 ex φg:1K0i=1Kgi=Ng:1K0
24 23 ss2abdv φg|g:1K0i=1Kgi=Ng|g:1K0
25 21 24 ssexd φg|g:1K0i=1Kgi=NV
26 16 25 eqeltrd φAV
27 26 adantr φp:1K1-1 ontoSAV
28 27 mptexd φp:1K1-1 ontoSaAxSap-1xV
29 1 adantr φp:1K1-1 ontoSN0
30 3 nnnn0d φK0
31 30 adantr φp:1K1-1 ontoSK0
32 simpr φp:1K1-1 ontoSp:1K1-1 ontoS
33 eqid aAxSap-1x=aAxSap-1x
34 eqid bBy1Kbpy=bBy1Kbpy
35 29 31 4 5 32 33 34 sticksstones19 φp:1K1-1 ontoSaAxSap-1x:A1-1 ontoB
36 f1oeq1 q=aAxSap-1xq:A1-1 ontoBaAxSap-1x:A1-1 ontoB
37 28 35 36 spcedv φp:1K1-1 ontoSqq:A1-1 ontoB
38 bren ABqq:A1-1 ontoB
39 37 38 sylibr φp:1K1-1 ontoSAB
40 15 39 exlimddv φAB
41 hasheni ABA=B
42 40 41 syl φA=B
43 42 eqcomd φB=A
44 1 3 4 sticksstones16 φA=(N+K-1K1)
45 43 44 eqtrd φB=(N+K-1K1)