Description: This theorem proves Lemma 1 in BrosowskiDeutsh p. 90. Here Z is used to represent t_0 in the paper, v is used to represent V in the paper, and e is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem56.1 | |
|
stoweidlem56.2 | |
||
stoweidlem56.3 | |
||
stoweidlem56.4 | |
||
stoweidlem56.5 | |
||
stoweidlem56.6 | |
||
stoweidlem56.7 | |
||
stoweidlem56.8 | |
||
stoweidlem56.9 | |
||
stoweidlem56.10 | |
||
stoweidlem56.11 | |
||
stoweidlem56.12 | |
||
stoweidlem56.13 | |
||
Assertion | stoweidlem56 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem56.1 | |
|
2 | stoweidlem56.2 | |
|
3 | stoweidlem56.3 | |
|
4 | stoweidlem56.4 | |
|
5 | stoweidlem56.5 | |
|
6 | stoweidlem56.6 | |
|
7 | stoweidlem56.7 | |
|
8 | stoweidlem56.8 | |
|
9 | stoweidlem56.9 | |
|
10 | stoweidlem56.10 | |
|
11 | stoweidlem56.11 | |
|
12 | stoweidlem56.12 | |
|
13 | stoweidlem56.13 | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | stoweidlem55 | |
17 | df-rex | |
|
18 | 16 17 | sylib | |
19 | simpl | |
|
20 | simprl | |
|
21 | simprr3 | |
|
22 | nfv | |
|
23 | nfra1 | |
|
24 | 2 22 23 | nf3an | |
25 | 4 | 3ad2ant1 | |
26 | 7 | sselda | |
27 | 26 6 | eleqtrdi | |
28 | 27 | 3adant3 | |
29 | simp3 | |
|
30 | 12 | 3ad2ant1 | |
31 | 1 24 3 5 25 28 29 30 | stoweidlem28 | |
32 | 19 20 21 31 | syl3anc | |
33 | simpr1 | |
|
34 | simpr2 | |
|
35 | simplrl | |
|
36 | simprr1 | |
|
37 | 36 | adantr | |
38 | simprr2 | |
|
39 | 38 | adantr | |
40 | simpr3 | |
|
41 | 37 39 40 | 3jca | |
42 | 35 41 | jca | |
43 | 33 34 42 | 3jca | |
44 | 43 | ex | |
45 | 44 | eximdv | |
46 | 32 45 | mpd | |
47 | 46 | ex | |
48 | 47 | eximdv | |
49 | 18 48 | mpd | |
50 | nfv | |
|
51 | nfv | |
|
52 | nfra1 | |
|
53 | nfv | |
|
54 | nfra1 | |
|
55 | 52 53 54 | nf3an | |
56 | 22 55 | nfan | |
57 | 50 51 56 | nf3an | |
58 | 2 57 | nfan | |
59 | nfcv | |
|
60 | eqid | |
|
61 | 7 | adantr | |
62 | 8 | 3adant1r | |
63 | 9 | 3adant1r | |
64 | 10 | adantlr | |
65 | simpr1 | |
|
66 | simpr2 | |
|
67 | 12 | adantr | |
68 | 13 | adantr | |
69 | simpr3l | |
|
70 | simp3r1 | |
|
71 | 70 | adantl | |
72 | simp3r2 | |
|
73 | 72 | adantl | |
74 | simp3r3 | |
|
75 | 74 | adantl | |
76 | 1 58 59 3 60 5 6 61 62 63 64 65 66 67 68 69 71 73 75 | stoweidlem52 | |
77 | 76 | ex | |
78 | 77 | exlimdvv | |
79 | 49 78 | mpd | |