Metamath Proof Explorer


Theorem stoweidlem56

Description: This theorem proves Lemma 1 in BrosowskiDeutsh p. 90. Here Z is used to represent t_0 in the paper, v is used to represent V in the paper, and e is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem56.1 _tU
stoweidlem56.2 tφ
stoweidlem56.3 K=topGenran.
stoweidlem56.4 φJComp
stoweidlem56.5 T=J
stoweidlem56.6 C=JCnK
stoweidlem56.7 φAC
stoweidlem56.8 φfAgAtTft+gtA
stoweidlem56.9 φfAgAtTftgtA
stoweidlem56.10 φytTyA
stoweidlem56.11 φrTtTrtqAqrqt
stoweidlem56.12 φUJ
stoweidlem56.13 φZU
Assertion stoweidlem56 φvJZvvUe+xAtT0xtxt1tvxt<etTU1e<xt

Proof

Step Hyp Ref Expression
1 stoweidlem56.1 _tU
2 stoweidlem56.2 tφ
3 stoweidlem56.3 K=topGenran.
4 stoweidlem56.4 φJComp
5 stoweidlem56.5 T=J
6 stoweidlem56.6 C=JCnK
7 stoweidlem56.7 φAC
8 stoweidlem56.8 φfAgAtTft+gtA
9 stoweidlem56.9 φfAgAtTftgtA
10 stoweidlem56.10 φytTyA
11 stoweidlem56.11 φrTtTrtqAqrqt
12 stoweidlem56.12 φUJ
13 stoweidlem56.13 φZU
14 eqid hA|hZ=0tT0htht1=hA|hZ=0tT0htht1
15 eqid wJ|hhA|hZ=0tT0htht1w=tT|0<ht=wJ|hhA|hZ=0tT0htht1w=tT|0<ht
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 stoweidlem55 φpAtT0ptpt1pZ=0tTU0<pt
17 df-rex pAtT0ptpt1pZ=0tTU0<ptppAtT0ptpt1pZ=0tTU0<pt
18 16 17 sylib φppAtT0ptpt1pZ=0tTU0<pt
19 simpl φpAtT0ptpt1pZ=0tTU0<ptφ
20 simprl φpAtT0ptpt1pZ=0tTU0<ptpA
21 simprr3 φpAtT0ptpt1pZ=0tTU0<pttTU0<pt
22 nfv tpA
23 nfra1 ttTU0<pt
24 2 22 23 nf3an tφpAtTU0<pt
25 4 3ad2ant1 φpAtTU0<ptJComp
26 7 sselda φpApC
27 26 6 eleqtrdi φpApJCnK
28 27 3adant3 φpAtTU0<ptpJCnK
29 simp3 φpAtTU0<pttTU0<pt
30 12 3ad2ant1 φpAtTU0<ptUJ
31 1 24 3 5 25 28 29 30 stoweidlem28 φpAtTU0<ptdd+d<1tTUdpt
32 19 20 21 31 syl3anc φpAtT0ptpt1pZ=0tTU0<ptdd+d<1tTUdpt
33 simpr1 φpAtT0ptpt1pZ=0tTU0<ptd+d<1tTUdptd+
34 simpr2 φpAtT0ptpt1pZ=0tTU0<ptd+d<1tTUdptd<1
35 simplrl φpAtT0ptpt1pZ=0tTU0<ptd+d<1tTUdptpA
36 simprr1 φpAtT0ptpt1pZ=0tTU0<pttT0ptpt1
37 36 adantr φpAtT0ptpt1pZ=0tTU0<ptd+d<1tTUdpttT0ptpt1
38 simprr2 φpAtT0ptpt1pZ=0tTU0<ptpZ=0
39 38 adantr φpAtT0ptpt1pZ=0tTU0<ptd+d<1tTUdptpZ=0
40 simpr3 φpAtT0ptpt1pZ=0tTU0<ptd+d<1tTUdpttTUdpt
41 37 39 40 3jca φpAtT0ptpt1pZ=0tTU0<ptd+d<1tTUdpttT0ptpt1pZ=0tTUdpt
42 35 41 jca φpAtT0ptpt1pZ=0tTU0<ptd+d<1tTUdptpAtT0ptpt1pZ=0tTUdpt
43 33 34 42 3jca φpAtT0ptpt1pZ=0tTU0<ptd+d<1tTUdptd+d<1pAtT0ptpt1pZ=0tTUdpt
44 43 ex φpAtT0ptpt1pZ=0tTU0<ptd+d<1tTUdptd+d<1pAtT0ptpt1pZ=0tTUdpt
45 44 eximdv φpAtT0ptpt1pZ=0tTU0<ptdd+d<1tTUdptdd+d<1pAtT0ptpt1pZ=0tTUdpt
46 32 45 mpd φpAtT0ptpt1pZ=0tTU0<ptdd+d<1pAtT0ptpt1pZ=0tTUdpt
47 46 ex φpAtT0ptpt1pZ=0tTU0<ptdd+d<1pAtT0ptpt1pZ=0tTUdpt
48 47 eximdv φppAtT0ptpt1pZ=0tTU0<ptpdd+d<1pAtT0ptpt1pZ=0tTUdpt
49 18 48 mpd φpdd+d<1pAtT0ptpt1pZ=0tTUdpt
50 nfv td+
51 nfv td<1
52 nfra1 ttT0ptpt1
53 nfv tpZ=0
54 nfra1 ttTUdpt
55 52 53 54 nf3an ttT0ptpt1pZ=0tTUdpt
56 22 55 nfan tpAtT0ptpt1pZ=0tTUdpt
57 50 51 56 nf3an td+d<1pAtT0ptpt1pZ=0tTUdpt
58 2 57 nfan tφd+d<1pAtT0ptpt1pZ=0tTUdpt
59 nfcv _tp
60 eqid tT|pt<d2=tT|pt<d2
61 7 adantr φd+d<1pAtT0ptpt1pZ=0tTUdptAC
62 8 3adant1r φd+d<1pAtT0ptpt1pZ=0tTUdptfAgAtTft+gtA
63 9 3adant1r φd+d<1pAtT0ptpt1pZ=0tTUdptfAgAtTftgtA
64 10 adantlr φd+d<1pAtT0ptpt1pZ=0tTUdptytTyA
65 simpr1 φd+d<1pAtT0ptpt1pZ=0tTUdptd+
66 simpr2 φd+d<1pAtT0ptpt1pZ=0tTUdptd<1
67 12 adantr φd+d<1pAtT0ptpt1pZ=0tTUdptUJ
68 13 adantr φd+d<1pAtT0ptpt1pZ=0tTUdptZU
69 simpr3l φd+d<1pAtT0ptpt1pZ=0tTUdptpA
70 simp3r1 d+d<1pAtT0ptpt1pZ=0tTUdpttT0ptpt1
71 70 adantl φd+d<1pAtT0ptpt1pZ=0tTUdpttT0ptpt1
72 simp3r2 d+d<1pAtT0ptpt1pZ=0tTUdptpZ=0
73 72 adantl φd+d<1pAtT0ptpt1pZ=0tTUdptpZ=0
74 simp3r3 d+d<1pAtT0ptpt1pZ=0tTUdpttTUdpt
75 74 adantl φd+d<1pAtT0ptpt1pZ=0tTUdpttTUdpt
76 1 58 59 3 60 5 6 61 62 63 64 65 66 67 68 69 71 73 75 stoweidlem52 φd+d<1pAtT0ptpt1pZ=0tTUdptvJZvvUe+xAtT0xtxt1tvxt<etTU1e<xt
77 76 ex φd+d<1pAtT0ptpt1pZ=0tTUdptvJZvvUe+xAtT0xtxt1tvxt<etTU1e<xt
78 77 exlimdvv φpdd+d<1pAtT0ptpt1pZ=0tTUdptvJZvvUe+xAtT0xtxt1tvxt<etTU1e<xt
79 49 78 mpd φvJZvvUe+xAtT0xtxt1tvxt<etTU1e<xt