Metamath Proof Explorer


Theorem structiedg0val

Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020) (Proof shortened by AV, 12-Nov-2021)

Ref Expression
Hypotheses structvtxvallem.s S
structvtxvallem.b Base ndx < S
structvtxvallem.g G = Base ndx V S E
Assertion structiedg0val V X E Y S ef ndx iEdg G =

Proof

Step Hyp Ref Expression
1 structvtxvallem.s S
2 structvtxvallem.b Base ndx < S
3 structvtxvallem.g G = Base ndx V S E
4 3 2 1 2strstr1 G Struct Base ndx S
5 structn0fun G Struct Base ndx S Fun G
6 1 2 3 structvtxvallem V X E Y 2 dom G
7 funiedgdmge2val Fun G 2 dom G iEdg G = ef G
8 5 6 7 syl2an G Struct Base ndx S V X E Y iEdg G = ef G
9 4 8 mpan V X E Y iEdg G = ef G
10 9 3adant3 V X E Y S ef ndx iEdg G = ef G
11 prex Base ndx V S E V
12 11 a1i G = Base ndx V S E Base ndx V S E V
13 3 12 eqeltrid G = Base ndx V S E G V
14 edgfndxid G V ef G = G ef ndx
15 3 13 14 mp2b ef G = G ef ndx
16 slotsbaseefdif Base ndx ef ndx
17 16 nesymi ¬ ef ndx = Base ndx
18 17 a1i V X E Y S ef ndx ¬ ef ndx = Base ndx
19 neneq S ef ndx ¬ S = ef ndx
20 eqcom ef ndx = S S = ef ndx
21 19 20 sylnibr S ef ndx ¬ ef ndx = S
22 21 3ad2ant3 V X E Y S ef ndx ¬ ef ndx = S
23 ioran ¬ ef ndx = Base ndx ef ndx = S ¬ ef ndx = Base ndx ¬ ef ndx = S
24 18 22 23 sylanbrc V X E Y S ef ndx ¬ ef ndx = Base ndx ef ndx = S
25 fvex ef ndx V
26 25 elpr ef ndx Base ndx S ef ndx = Base ndx ef ndx = S
27 24 26 sylnibr V X E Y S ef ndx ¬ ef ndx Base ndx S
28 3 dmeqi dom G = dom Base ndx V S E
29 dmpropg V X E Y dom Base ndx V S E = Base ndx S
30 29 3adant3 V X E Y S ef ndx dom Base ndx V S E = Base ndx S
31 28 30 syl5eq V X E Y S ef ndx dom G = Base ndx S
32 27 31 neleqtrrd V X E Y S ef ndx ¬ ef ndx dom G
33 ndmfv ¬ ef ndx dom G G ef ndx =
34 32 33 syl V X E Y S ef ndx G ef ndx =
35 15 34 syl5eq V X E Y S ef ndx ef G =
36 10 35 eqtrd V X E Y S ef ndx iEdg G =