Metamath Proof Explorer


Theorem structiedg0val

Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020) (Proof shortened by AV, 12-Nov-2021)

Ref Expression
Hypotheses structvtxvallem.s S
structvtxvallem.b Basendx<S
structvtxvallem.g G=BasendxVSE
Assertion structiedg0val VXEYSefndxiEdgG=

Proof

Step Hyp Ref Expression
1 structvtxvallem.s S
2 structvtxvallem.b Basendx<S
3 structvtxvallem.g G=BasendxVSE
4 3 2 1 2strstr1 GStructBasendxS
5 structn0fun GStructBasendxSFunG
6 1 2 3 structvtxvallem VXEY2domG
7 funiedgdmge2val FunG2domGiEdgG=efG
8 5 6 7 syl2an GStructBasendxSVXEYiEdgG=efG
9 4 8 mpan VXEYiEdgG=efG
10 9 3adant3 VXEYSefndxiEdgG=efG
11 prex BasendxVSEV
12 11 a1i G=BasendxVSEBasendxVSEV
13 3 12 eqeltrid G=BasendxVSEGV
14 edgfndxid GVefG=Gefndx
15 3 13 14 mp2b efG=Gefndx
16 basendxnedgfndx Basendxefndx
17 16 nesymi ¬efndx=Basendx
18 17 a1i VXEYSefndx¬efndx=Basendx
19 neneq Sefndx¬S=efndx
20 eqcom efndx=SS=efndx
21 19 20 sylnibr Sefndx¬efndx=S
22 21 3ad2ant3 VXEYSefndx¬efndx=S
23 ioran ¬efndx=Basendxefndx=S¬efndx=Basendx¬efndx=S
24 18 22 23 sylanbrc VXEYSefndx¬efndx=Basendxefndx=S
25 fvex efndxV
26 25 elpr efndxBasendxSefndx=Basendxefndx=S
27 24 26 sylnibr VXEYSefndx¬efndxBasendxS
28 3 dmeqi domG=domBasendxVSE
29 dmpropg VXEYdomBasendxVSE=BasendxS
30 29 3adant3 VXEYSefndxdomBasendxVSE=BasendxS
31 28 30 eqtrid VXEYSefndxdomG=BasendxS
32 27 31 neleqtrrd VXEYSefndx¬efndxdomG
33 ndmfv ¬efndxdomGGefndx=
34 32 33 syl VXEYSefndxGefndx=
35 15 34 eqtrid VXEYSefndxefG=
36 10 35 eqtrd VXEYSefndxiEdgG=