| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomdom |
|
| 2 |
|
brdomi |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
relsdom |
|
| 5 |
4
|
brrelex1i |
|
| 6 |
5
|
adantr |
|
| 7 |
|
vex |
|
| 8 |
7
|
rnex |
|
| 9 |
8
|
a1i |
|
| 10 |
|
f1f1orn |
|
| 11 |
10
|
adantl |
|
| 12 |
|
f1of1 |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
f1dom2g |
|
| 15 |
6 9 13 14
|
syl3anc |
|
| 16 |
|
sdomnen |
|
| 17 |
16
|
adantr |
|
| 18 |
|
ssdif0 |
|
| 19 |
|
simplr |
|
| 20 |
|
f1f |
|
| 21 |
20
|
frnd |
|
| 22 |
19 21
|
syl |
|
| 23 |
|
simpr |
|
| 24 |
22 23
|
eqssd |
|
| 25 |
|
dff1o5 |
|
| 26 |
19 24 25
|
sylanbrc |
|
| 27 |
|
f1oen3g |
|
| 28 |
7 26 27
|
sylancr |
|
| 29 |
28
|
ex |
|
| 30 |
18 29
|
biimtrrid |
|
| 31 |
17 30
|
mtod |
|
| 32 |
|
neq0 |
|
| 33 |
31 32
|
sylib |
|
| 34 |
|
snssi |
|
| 35 |
|
vex |
|
| 36 |
|
en2sn |
|
| 37 |
6 35 36
|
sylancl |
|
| 38 |
4
|
brrelex2i |
|
| 39 |
38
|
adantr |
|
| 40 |
|
difexg |
|
| 41 |
|
ssdomg |
|
| 42 |
39 40 41
|
3syl |
|
| 43 |
|
endomtr |
|
| 44 |
37 42 43
|
syl6an |
|
| 45 |
34 44
|
syl5 |
|
| 46 |
45
|
exlimdv |
|
| 47 |
33 46
|
mpd |
|
| 48 |
|
disjdif |
|
| 49 |
48
|
a1i |
|
| 50 |
|
undom |
|
| 51 |
15 47 49 50
|
syl21anc |
|
| 52 |
|
df-suc |
|
| 53 |
52
|
a1i |
|
| 54 |
|
undif2 |
|
| 55 |
21
|
adantl |
|
| 56 |
|
ssequn1 |
|
| 57 |
55 56
|
sylib |
|
| 58 |
54 57
|
eqtr2id |
|
| 59 |
51 53 58
|
3brtr4d |
|
| 60 |
3 59
|
exlimddv |
|