| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdomdom |  |-  ( A ~< B -> A ~<_ B ) | 
						
							| 2 |  | brdomi |  |-  ( A ~<_ B -> E. f f : A -1-1-> B ) | 
						
							| 3 | 1 2 | syl |  |-  ( A ~< B -> E. f f : A -1-1-> B ) | 
						
							| 4 |  | relsdom |  |-  Rel ~< | 
						
							| 5 | 4 | brrelex1i |  |-  ( A ~< B -> A e. _V ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> A e. _V ) | 
						
							| 7 |  | vex |  |-  f e. _V | 
						
							| 8 | 7 | rnex |  |-  ran f e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ran f e. _V ) | 
						
							| 10 |  | f1f1orn |  |-  ( f : A -1-1-> B -> f : A -1-1-onto-> ran f ) | 
						
							| 11 | 10 | adantl |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> f : A -1-1-onto-> ran f ) | 
						
							| 12 |  | f1of1 |  |-  ( f : A -1-1-onto-> ran f -> f : A -1-1-> ran f ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> f : A -1-1-> ran f ) | 
						
							| 14 |  | f1dom2g |  |-  ( ( A e. _V /\ ran f e. _V /\ f : A -1-1-> ran f ) -> A ~<_ ran f ) | 
						
							| 15 | 6 9 13 14 | syl3anc |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> A ~<_ ran f ) | 
						
							| 16 |  | sdomnen |  |-  ( A ~< B -> -. A ~~ B ) | 
						
							| 17 | 16 | adantr |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> -. A ~~ B ) | 
						
							| 18 |  | ssdif0 |  |-  ( B C_ ran f <-> ( B \ ran f ) = (/) ) | 
						
							| 19 |  | simplr |  |-  ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> f : A -1-1-> B ) | 
						
							| 20 |  | f1f |  |-  ( f : A -1-1-> B -> f : A --> B ) | 
						
							| 21 | 20 | frnd |  |-  ( f : A -1-1-> B -> ran f C_ B ) | 
						
							| 22 | 19 21 | syl |  |-  ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> ran f C_ B ) | 
						
							| 23 |  | simpr |  |-  ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> B C_ ran f ) | 
						
							| 24 | 22 23 | eqssd |  |-  ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> ran f = B ) | 
						
							| 25 |  | dff1o5 |  |-  ( f : A -1-1-onto-> B <-> ( f : A -1-1-> B /\ ran f = B ) ) | 
						
							| 26 | 19 24 25 | sylanbrc |  |-  ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> f : A -1-1-onto-> B ) | 
						
							| 27 |  | f1oen3g |  |-  ( ( f e. _V /\ f : A -1-1-onto-> B ) -> A ~~ B ) | 
						
							| 28 | 7 26 27 | sylancr |  |-  ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> A ~~ B ) | 
						
							| 29 | 28 | ex |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ( B C_ ran f -> A ~~ B ) ) | 
						
							| 30 | 18 29 | biimtrrid |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ( ( B \ ran f ) = (/) -> A ~~ B ) ) | 
						
							| 31 | 17 30 | mtod |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> -. ( B \ ran f ) = (/) ) | 
						
							| 32 |  | neq0 |  |-  ( -. ( B \ ran f ) = (/) <-> E. w w e. ( B \ ran f ) ) | 
						
							| 33 | 31 32 | sylib |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> E. w w e. ( B \ ran f ) ) | 
						
							| 34 |  | snssi |  |-  ( w e. ( B \ ran f ) -> { w } C_ ( B \ ran f ) ) | 
						
							| 35 |  | vex |  |-  w e. _V | 
						
							| 36 |  | en2sn |  |-  ( ( A e. _V /\ w e. _V ) -> { A } ~~ { w } ) | 
						
							| 37 | 6 35 36 | sylancl |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> { A } ~~ { w } ) | 
						
							| 38 | 4 | brrelex2i |  |-  ( A ~< B -> B e. _V ) | 
						
							| 39 | 38 | adantr |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> B e. _V ) | 
						
							| 40 |  | difexg |  |-  ( B e. _V -> ( B \ ran f ) e. _V ) | 
						
							| 41 |  | ssdomg |  |-  ( ( B \ ran f ) e. _V -> ( { w } C_ ( B \ ran f ) -> { w } ~<_ ( B \ ran f ) ) ) | 
						
							| 42 | 39 40 41 | 3syl |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ( { w } C_ ( B \ ran f ) -> { w } ~<_ ( B \ ran f ) ) ) | 
						
							| 43 |  | endomtr |  |-  ( ( { A } ~~ { w } /\ { w } ~<_ ( B \ ran f ) ) -> { A } ~<_ ( B \ ran f ) ) | 
						
							| 44 | 37 42 43 | syl6an |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ( { w } C_ ( B \ ran f ) -> { A } ~<_ ( B \ ran f ) ) ) | 
						
							| 45 | 34 44 | syl5 |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ( w e. ( B \ ran f ) -> { A } ~<_ ( B \ ran f ) ) ) | 
						
							| 46 | 45 | exlimdv |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ( E. w w e. ( B \ ran f ) -> { A } ~<_ ( B \ ran f ) ) ) | 
						
							| 47 | 33 46 | mpd |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> { A } ~<_ ( B \ ran f ) ) | 
						
							| 48 |  | disjdif |  |-  ( ran f i^i ( B \ ran f ) ) = (/) | 
						
							| 49 | 48 | a1i |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ( ran f i^i ( B \ ran f ) ) = (/) ) | 
						
							| 50 |  | undom |  |-  ( ( ( A ~<_ ran f /\ { A } ~<_ ( B \ ran f ) ) /\ ( ran f i^i ( B \ ran f ) ) = (/) ) -> ( A u. { A } ) ~<_ ( ran f u. ( B \ ran f ) ) ) | 
						
							| 51 | 15 47 49 50 | syl21anc |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ( A u. { A } ) ~<_ ( ran f u. ( B \ ran f ) ) ) | 
						
							| 52 |  | df-suc |  |-  suc A = ( A u. { A } ) | 
						
							| 53 | 52 | a1i |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> suc A = ( A u. { A } ) ) | 
						
							| 54 |  | undif2 |  |-  ( ran f u. ( B \ ran f ) ) = ( ran f u. B ) | 
						
							| 55 | 21 | adantl |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ran f C_ B ) | 
						
							| 56 |  | ssequn1 |  |-  ( ran f C_ B <-> ( ran f u. B ) = B ) | 
						
							| 57 | 55 56 | sylib |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> ( ran f u. B ) = B ) | 
						
							| 58 | 54 57 | eqtr2id |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> B = ( ran f u. ( B \ ran f ) ) ) | 
						
							| 59 | 51 53 58 | 3brtr4d |  |-  ( ( A ~< B /\ f : A -1-1-> B ) -> suc A ~<_ B ) | 
						
							| 60 | 3 59 | exlimddv |  |-  ( A ~< B -> suc A ~<_ B ) |