Description: Lemma for supiso . (Contributed by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supiso.1 | |
|
supiso.2 | |
||
Assertion | supisolem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supiso.1 | |
|
2 | supiso.2 | |
|
3 | 1 2 | jca | |
4 | simpll | |
|
5 | 4 | adantr | |
6 | simplr | |
|
7 | simplr | |
|
8 | 7 | sselda | |
9 | isorel | |
|
10 | 5 6 8 9 | syl12anc | |
11 | 10 | notbid | |
12 | 11 | ralbidva | |
13 | isof1o | |
|
14 | 4 13 | syl | |
15 | f1ofn | |
|
16 | 14 15 | syl | |
17 | breq2 | |
|
18 | 17 | notbid | |
19 | 18 | ralima | |
20 | 16 7 19 | syl2anc | |
21 | 12 20 | bitr4d | |
22 | 4 | adantr | |
23 | simpr | |
|
24 | simplr | |
|
25 | isorel | |
|
26 | 22 23 24 25 | syl12anc | |
27 | 22 | adantr | |
28 | simplr | |
|
29 | 7 | adantr | |
30 | 29 | sselda | |
31 | isorel | |
|
32 | 27 28 30 31 | syl12anc | |
33 | 32 | rexbidva | |
34 | 16 | adantr | |
35 | breq2 | |
|
36 | 35 | rexima | |
37 | 34 29 36 | syl2anc | |
38 | 33 37 | bitr4d | |
39 | 26 38 | imbi12d | |
40 | 39 | ralbidva | |
41 | f1ofo | |
|
42 | breq1 | |
|
43 | breq1 | |
|
44 | 43 | rexbidv | |
45 | 42 44 | imbi12d | |
46 | 45 | cbvfo | |
47 | 14 41 46 | 3syl | |
48 | 40 47 | bitrd | |
49 | 21 48 | anbi12d | |
50 | 3 49 | sylan | |