Metamath Proof Explorer


Theorem supisolem

Description: Lemma for supiso . (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypotheses supiso.1 φFIsomR,SAB
supiso.2 φCA
Assertion supisolem φDAyC¬DRyyAyRDzCyRzwFC¬FDSwwBwSFDvFCwSv

Proof

Step Hyp Ref Expression
1 supiso.1 φFIsomR,SAB
2 supiso.2 φCA
3 1 2 jca φFIsomR,SABCA
4 simpll FIsomR,SABCADAFIsomR,SAB
5 4 adantr FIsomR,SABCADAyCFIsomR,SAB
6 simplr FIsomR,SABCADAyCDA
7 simplr FIsomR,SABCADACA
8 7 sselda FIsomR,SABCADAyCyA
9 isorel FIsomR,SABDAyADRyFDSFy
10 5 6 8 9 syl12anc FIsomR,SABCADAyCDRyFDSFy
11 10 notbid FIsomR,SABCADAyC¬DRy¬FDSFy
12 11 ralbidva FIsomR,SABCADAyC¬DRyyC¬FDSFy
13 isof1o FIsomR,SABF:A1-1 ontoB
14 4 13 syl FIsomR,SABCADAF:A1-1 ontoB
15 f1ofn F:A1-1 ontoBFFnA
16 14 15 syl FIsomR,SABCADAFFnA
17 breq2 w=FyFDSwFDSFy
18 17 notbid w=Fy¬FDSw¬FDSFy
19 18 ralima FFnACAwFC¬FDSwyC¬FDSFy
20 16 7 19 syl2anc FIsomR,SABCADAwFC¬FDSwyC¬FDSFy
21 12 20 bitr4d FIsomR,SABCADAyC¬DRywFC¬FDSw
22 4 adantr FIsomR,SABCADAyAFIsomR,SAB
23 simpr FIsomR,SABCADAyAyA
24 simplr FIsomR,SABCADAyADA
25 isorel FIsomR,SAByADAyRDFySFD
26 22 23 24 25 syl12anc FIsomR,SABCADAyAyRDFySFD
27 22 adantr FIsomR,SABCADAyAzCFIsomR,SAB
28 simplr FIsomR,SABCADAyAzCyA
29 7 adantr FIsomR,SABCADAyACA
30 29 sselda FIsomR,SABCADAyAzCzA
31 isorel FIsomR,SAByAzAyRzFySFz
32 27 28 30 31 syl12anc FIsomR,SABCADAyAzCyRzFySFz
33 32 rexbidva FIsomR,SABCADAyAzCyRzzCFySFz
34 16 adantr FIsomR,SABCADAyAFFnA
35 breq2 v=FzFySvFySFz
36 35 rexima FFnACAvFCFySvzCFySFz
37 34 29 36 syl2anc FIsomR,SABCADAyAvFCFySvzCFySFz
38 33 37 bitr4d FIsomR,SABCADAyAzCyRzvFCFySv
39 26 38 imbi12d FIsomR,SABCADAyAyRDzCyRzFySFDvFCFySv
40 39 ralbidva FIsomR,SABCADAyAyRDzCyRzyAFySFDvFCFySv
41 f1ofo F:A1-1 ontoBF:AontoB
42 breq1 Fy=wFySFDwSFD
43 breq1 Fy=wFySvwSv
44 43 rexbidv Fy=wvFCFySvvFCwSv
45 42 44 imbi12d Fy=wFySFDvFCFySvwSFDvFCwSv
46 45 cbvfo F:AontoByAFySFDvFCFySvwBwSFDvFCwSv
47 14 41 46 3syl FIsomR,SABCADAyAFySFDvFCFySvwBwSFDvFCwSv
48 40 47 bitrd FIsomR,SABCADAyAyRDzCyRzwBwSFDvFCwSv
49 21 48 anbi12d FIsomR,SABCADAyC¬DRyyAyRDzCyRzwFC¬FDSwwBwSFDvFCwSv
50 3 49 sylan φDAyC¬DRyyAyRDzCyRzwFC¬FDSwwBwSFDvFCwSv