| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supmul.1 |
|
| 2 |
|
supmul.2 |
|
| 3 |
|
vex |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
eqeq2d |
|
| 6 |
5
|
rexbidv |
|
| 7 |
6
|
cbvrexvw |
|
| 8 |
|
eqeq1 |
|
| 9 |
8
|
2rexbidv |
|
| 10 |
7 9
|
bitrid |
|
| 11 |
3 10 1
|
elab2 |
|
| 12 |
2
|
simp2bi |
|
| 13 |
12
|
simp1d |
|
| 14 |
13
|
sselda |
|
| 15 |
14
|
adantrr |
|
| 16 |
|
suprcl |
|
| 17 |
12 16
|
syl |
|
| 18 |
17
|
adantr |
|
| 19 |
2
|
simp3bi |
|
| 20 |
19
|
simp1d |
|
| 21 |
20
|
sselda |
|
| 22 |
21
|
adantrl |
|
| 23 |
|
suprcl |
|
| 24 |
19 23
|
syl |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simp1l |
|
| 27 |
2 26
|
sylbi |
|
| 28 |
|
breq2 |
|
| 29 |
28
|
rspccv |
|
| 30 |
27 29
|
syl |
|
| 31 |
30
|
imp |
|
| 32 |
31
|
adantrr |
|
| 33 |
|
simp1r |
|
| 34 |
2 33
|
sylbi |
|
| 35 |
|
breq2 |
|
| 36 |
35
|
rspccv |
|
| 37 |
34 36
|
syl |
|
| 38 |
37
|
imp |
|
| 39 |
38
|
adantrl |
|
| 40 |
|
suprub |
|
| 41 |
12 40
|
sylan |
|
| 42 |
41
|
adantrr |
|
| 43 |
|
suprub |
|
| 44 |
19 43
|
sylan |
|
| 45 |
44
|
adantrl |
|
| 46 |
15 18 22 25 32 39 42 45
|
lemul12ad |
|
| 47 |
46
|
ex |
|
| 48 |
|
breq1 |
|
| 49 |
48
|
biimprcd |
|
| 50 |
47 49
|
syl6 |
|
| 51 |
50
|
rexlimdvv |
|
| 52 |
11 51
|
biimtrid |
|
| 53 |
52
|
ralrimiv |
|