Metamath Proof Explorer


Theorem suprnmpt

Description: An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses suprnmpt.a φA
suprnmpt.b φxAB
suprnmpt.bnd φyxABy
suprnmpt.f F=xAB
suprnmpt.c C=supranF<
Assertion suprnmpt φCxABC

Proof

Step Hyp Ref Expression
1 suprnmpt.a φA
2 suprnmpt.b φxAB
3 suprnmpt.bnd φyxABy
4 suprnmpt.f F=xAB
5 suprnmpt.c C=supranF<
6 2 ralrimiva φxAB
7 4 rnmptss xABranF
8 6 7 syl φranF
9 nfv xφ
10 9 2 4 1 rnmptn0 φranF
11 nfv yφ
12 nfre1 yyzranFzy
13 simp2 φyxAByy
14 simpl1 φyxAByzranFφ
15 simpl3 φyxAByzranFxABy
16 vex zV
17 4 elrnmpt zVzranFxAz=B
18 16 17 ax-mp zranFxAz=B
19 18 biimpi zranFxAz=B
20 19 adantl φyxAByzranFxAz=B
21 simp3 φxAByxAz=BxAz=B
22 nfra1 xxABy
23 nfre1 xxAz=B
24 9 22 23 nf3an xφxAByxAz=B
25 nfv xzy
26 simp3 xAByxAz=Bz=B
27 rspa xAByxABy
28 27 3adant3 xAByxAz=BBy
29 26 28 eqbrtrd xAByxAz=Bzy
30 29 3exp xAByxAz=Bzy
31 30 3ad2ant2 φxAByxAz=BxAz=Bzy
32 24 25 31 rexlimd φxAByxAz=BxAz=Bzy
33 21 32 mpd φxAByxAz=Bzy
34 14 15 20 33 syl3anc φyxAByzranFzy
35 34 ralrimiva φyxAByzranFzy
36 19.8a yzranFzyyyzranFzy
37 13 35 36 syl2anc φyxAByyyzranFzy
38 df-rex yzranFzyyyzranFzy
39 37 38 sylibr φyxAByyzranFzy
40 39 3exp φyxAByyzranFzy
41 11 12 40 rexlimd φyxAByyzranFzy
42 3 41 mpd φyzranFzy
43 suprcl ranFranFyzranFzysupranF<
44 8 10 42 43 syl3anc φsupranF<
45 5 44 eqeltrid φC
46 8 adantr φxAranF
47 simpr φxAxA
48 4 elrnmpt1 xABBranF
49 47 2 48 syl2anc φxABranF
50 49 ne0d φxAranF
51 42 adantr φxAyzranFzy
52 suprub ranFranFyzranFzyBranFBsupranF<
53 46 50 51 49 52 syl31anc φxABsupranF<
54 53 5 breqtrrdi φxABC
55 54 ralrimiva φxABC
56 45 55 jca φCxABC