Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrunb3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2re | |
|
2 | 1 | adantl | |
3 | simpl | |
|
4 | breq1 | |
|
5 | 4 | rexbidv | |
6 | 5 | rspcva | |
7 | 2 3 6 | syl2anc | |
8 | 7 | adantll | |
9 | nfv | |
|
10 | nfcv | |
|
11 | nfre1 | |
|
12 | 10 11 | nfralw | |
13 | 9 12 | nfan | |
14 | nfv | |
|
15 | 13 14 | nfan | |
16 | simp1r | |
|
17 | rexr | |
|
18 | 16 17 | syl | |
19 | 1 | rexrd | |
20 | 16 19 | syl | |
21 | simp1l | |
|
22 | simp2 | |
|
23 | ssel2 | |
|
24 | 21 22 23 | syl2anc | |
25 | 16 | ltp1d | |
26 | simp3 | |
|
27 | 18 20 24 25 26 | xrltletrd | |
28 | 27 | 3exp | |
29 | 28 | adantlr | |
30 | 15 29 | reximdai | |
31 | 8 30 | mpd | |
32 | 31 | ralrimiva | |
33 | 32 | ex | |
34 | breq1 | |
|
35 | 34 | rexbidv | |
36 | 35 | cbvralvw | |
37 | 36 | biimpi | |
38 | nfv | |
|
39 | nfra1 | |
|
40 | 38 39 | nfan | |
41 | simpll | |
|
42 | simpr | |
|
43 | rspa | |
|
44 | 43 | adantll | |
45 | rexr | |
|
46 | 45 | ad3antlr | |
47 | 23 | adantr | |
48 | 47 | adantllr | |
49 | simpr | |
|
50 | 46 48 49 | xrltled | |
51 | 50 | ex | |
52 | 51 | reximdva | |
53 | 52 | adantlr | |
54 | 44 53 | mpd | |
55 | simpr | |
|
56 | 41 42 54 55 | syl21anc | |
57 | 56 | ex | |
58 | 40 57 | ralrimi | |
59 | 37 58 | sylan2 | |
60 | 59 | ex | |
61 | 33 60 | impbid | |
62 | supxrunb2 | |
|
63 | 61 62 | bitrd | |