Metamath Proof Explorer


Theorem supxrunb3

Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion supxrunb3 A*xyAxysupA*<=+∞

Proof

Step Hyp Ref Expression
1 peano2re ww+1
2 1 adantl xyAxyww+1
3 simpl xyAxywxyAxy
4 breq1 x=w+1xyw+1y
5 4 rexbidv x=w+1yAxyyAw+1y
6 5 rspcva w+1xyAxyyAw+1y
7 2 3 6 syl2anc xyAxywyAw+1y
8 7 adantll A*xyAxywyAw+1y
9 nfv yA*
10 nfcv _y
11 nfre1 yyAxy
12 10 11 nfralw yxyAxy
13 9 12 nfan yA*xyAxy
14 nfv yw
15 13 14 nfan yA*xyAxyw
16 simp1r A*wyAw+1yw
17 rexr ww*
18 16 17 syl A*wyAw+1yw*
19 1 rexrd ww+1*
20 16 19 syl A*wyAw+1yw+1*
21 simp1l A*wyAw+1yA*
22 simp2 A*wyAw+1yyA
23 ssel2 A*yAy*
24 21 22 23 syl2anc A*wyAw+1yy*
25 16 ltp1d A*wyAw+1yw<w+1
26 simp3 A*wyAw+1yw+1y
27 18 20 24 25 26 xrltletrd A*wyAw+1yw<y
28 27 3exp A*wyAw+1yw<y
29 28 adantlr A*xyAxywyAw+1yw<y
30 15 29 reximdai A*xyAxywyAw+1yyAw<y
31 8 30 mpd A*xyAxywyAw<y
32 31 ralrimiva A*xyAxywyAw<y
33 32 ex A*xyAxywyAw<y
34 breq1 w=xw<yx<y
35 34 rexbidv w=xyAw<yyAx<y
36 35 cbvralvw wyAw<yxyAx<y
37 36 biimpi wyAw<yxyAx<y
38 nfv xA*
39 nfra1 xxyAx<y
40 38 39 nfan xA*xyAx<y
41 simpll A*xyAx<yxA*
42 simpr A*xyAx<yxx
43 rspa xyAx<yxyAx<y
44 43 adantll A*xyAx<yxyAx<y
45 rexr xx*
46 45 ad3antlr A*xyAx<yx*
47 23 adantr A*yAx<yy*
48 47 adantllr A*xyAx<yy*
49 simpr A*xyAx<yx<y
50 46 48 49 xrltled A*xyAx<yxy
51 50 ex A*xyAx<yxy
52 51 reximdva A*xyAx<yyAxy
53 52 adantlr A*xyAx<yxyAx<yyAxy
54 44 53 mpd A*xyAx<yxyAxy
55 simpr A*xyAxyyAxy
56 41 42 54 55 syl21anc A*xyAx<yxyAxy
57 56 ex A*xyAx<yxyAxy
58 40 57 ralrimi A*xyAx<yxyAxy
59 37 58 sylan2 A*wyAw<yxyAxy
60 59 ex A*wyAw<yxyAxy
61 33 60 impbid A*xyAxywyAw<y
62 supxrunb2 A*wyAw<ysupA*<=+∞
63 61 62 bitrd A*xyAxysupA*<=+∞