Metamath Proof Explorer


Theorem swrds2

Description: Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion swrds2 WWordAI0I+10..^WWsubstrII+2=⟨“WIWI+1”⟩

Proof

Step Hyp Ref Expression
1 df-s2 ⟨“WIWI+1”⟩=⟨“WI”⟩++⟨“WI+1”⟩
2 simp1 WWordAI0I+10..^WWWordA
3 simp2 WWordAI0I+10..^WI0
4 elfzo0 I+10..^WI+10WI+1<W
5 4 simp2bi I+10..^WW
6 5 3ad2ant3 WWordAI0I+10..^WW
7 3 nn0red WWordAI0I+10..^WI
8 peano2nn0 I0I+10
9 3 8 syl WWordAI0I+10..^WI+10
10 9 nn0red WWordAI0I+10..^WI+1
11 6 nnred WWordAI0I+10..^WW
12 7 lep1d WWordAI0I+10..^WII+1
13 elfzolt2 I+10..^WI+1<W
14 13 3ad2ant3 WWordAI0I+10..^WI+1<W
15 7 10 11 12 14 lelttrd WWordAI0I+10..^WI<W
16 elfzo0 I0..^WI0WI<W
17 3 6 15 16 syl3anbrc WWordAI0I+10..^WI0..^W
18 swrds1 WWordAI0..^WWsubstrII+1=⟨“WI”⟩
19 2 17 18 syl2anc WWordAI0I+10..^WWsubstrII+1=⟨“WI”⟩
20 nn0cn I0I
21 20 3ad2ant2 WWordAI0I+10..^WI
22 df-2 2=1+1
23 22 oveq2i I+2=I+1+1
24 ax-1cn 1
25 addass I11I+1+1=I+1+1
26 24 24 25 mp3an23 II+1+1=I+1+1
27 23 26 eqtr4id II+2=I+1+1
28 21 27 syl WWordAI0I+10..^WI+2=I+1+1
29 28 opeq2d WWordAI0I+10..^WI+1I+2=I+1I+1+1
30 29 oveq2d WWordAI0I+10..^WWsubstrI+1I+2=WsubstrI+1I+1+1
31 swrds1 WWordAI+10..^WWsubstrI+1I+1+1=⟨“WI+1”⟩
32 31 3adant2 WWordAI0I+10..^WWsubstrI+1I+1+1=⟨“WI+1”⟩
33 30 32 eqtrd WWordAI0I+10..^WWsubstrI+1I+2=⟨“WI+1”⟩
34 19 33 oveq12d WWordAI0I+10..^WWsubstrII+1++WsubstrI+1I+2=⟨“WI”⟩++⟨“WI+1”⟩
35 1 34 eqtr4id WWordAI0I+10..^W⟨“WIWI+1”⟩=WsubstrII+1++WsubstrI+1I+2
36 elfz2nn0 I0I+1I0I+10II+1
37 3 9 12 36 syl3anbrc WWordAI0I+10..^WI0I+1
38 peano2nn0 I+10I+1+10
39 9 38 syl WWordAI0I+10..^WI+1+10
40 28 39 eqeltrd WWordAI0I+10..^WI+20
41 10 lep1d WWordAI0I+10..^WI+1I+1+1
42 41 28 breqtrrd WWordAI0I+10..^WI+1I+2
43 elfz2nn0 I+10I+2I+10I+20I+1I+2
44 9 40 42 43 syl3anbrc WWordAI0I+10..^WI+10I+2
45 fzofzp1 I+10..^WI+1+10W
46 45 3ad2ant3 WWordAI0I+10..^WI+1+10W
47 28 46 eqeltrd WWordAI0I+10..^WI+20W
48 ccatswrd WWordAI0I+1I+10I+2I+20WWsubstrII+1++WsubstrI+1I+2=WsubstrII+2
49 2 37 44 47 48 syl13anc WWordAI0I+10..^WWsubstrII+1++WsubstrI+1I+2=WsubstrII+2
50 35 49 eqtr2d WWordAI0I+10..^WWsubstrII+2=⟨“WIWI+1”⟩