Metamath Proof Explorer


Theorem tgpmulg

Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypotheses tgpmulg.j J=TopOpenG
tgpmulg.t ·˙=G
tgpmulg.b B=BaseG
Assertion tgpmulg GTopGrpNxBN·˙xJCnJ

Proof

Step Hyp Ref Expression
1 tgpmulg.j J=TopOpenG
2 tgpmulg.t ·˙=G
3 tgpmulg.b B=BaseG
4 tgptmd GTopGrpGTopMnd
5 1 2 3 tmdmulg GTopMndN0xBN·˙xJCnJ
6 4 5 sylan GTopGrpN0xBN·˙xJCnJ
7 6 adantlr GTopGrpNN0xBN·˙xJCnJ
8 simpllr GTopGrpNNxBN
9 8 zcnd GTopGrpNNxBN
10 9 negnegd GTopGrpNNxB- N=N
11 10 oveq1d GTopGrpNNxB- N·˙x=N·˙x
12 eqid invgG=invgG
13 3 2 12 mulgnegnn NxB- N·˙x=invgG- N·˙x
14 13 adantll GTopGrpNNxB- N·˙x=invgG- N·˙x
15 11 14 eqtr3d GTopGrpNNxBN·˙x=invgG- N·˙x
16 15 mpteq2dva GTopGrpNNxBN·˙x=xBinvgG- N·˙x
17 1 3 tgptopon GTopGrpJTopOnB
18 17 ad2antrr GTopGrpNNJTopOnB
19 4 adantr GTopGrpNGTopMnd
20 nnnn0 NN0
21 1 2 3 tmdmulg GTopMndN0xB- N·˙xJCnJ
22 19 20 21 syl2an GTopGrpNNxB- N·˙xJCnJ
23 1 12 tgpinv GTopGrpinvgGJCnJ
24 23 ad2antrr GTopGrpNNinvgGJCnJ
25 18 22 24 cnmpt11f GTopGrpNNxBinvgG- N·˙xJCnJ
26 16 25 eqeltrd GTopGrpNNxBN·˙xJCnJ
27 26 adantrl GTopGrpNNNxBN·˙xJCnJ
28 simpr GTopGrpNN
29 elznn0nn NN0NN
30 28 29 sylib GTopGrpNN0NN
31 7 27 30 mpjaodan GTopGrpNxBN·˙xJCnJ