Description: Lemma for tgrpgrp . (Contributed by NM, 6-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgrpset.h | |
|
tgrpset.t | |
||
tgrpset.g | |
||
tgrp.o | |
||
tgrp.b | |
||
Assertion | tgrpgrplem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgrpset.h | |
|
2 | tgrpset.t | |
|
3 | tgrpset.g | |
|
4 | tgrp.o | |
|
5 | tgrp.b | |
|
6 | eqid | |
|
7 | 1 2 3 6 | tgrpbase | |
8 | 7 | eqcomd | |
9 | 4 | a1i | |
10 | 1 2 3 4 | tgrpov | |
11 | 10 | 3expa | |
12 | 11 | 3impb | |
13 | 1 2 | ltrnco | |
14 | 12 13 | eqeltrd | |
15 | coass | |
|
16 | simpll | |
|
17 | simplr | |
|
18 | simpr1 | |
|
19 | simpr2 | |
|
20 | 16 17 18 19 10 | syl112anc | |
21 | 20 | oveq1d | |
22 | simpl | |
|
23 | 22 18 19 13 | syl3anc | |
24 | simpr3 | |
|
25 | 1 2 3 4 | tgrpov | |
26 | 16 17 23 24 25 | syl112anc | |
27 | 21 26 | eqtrd | |
28 | 1 2 3 4 | tgrpov | |
29 | 16 17 19 24 28 | syl112anc | |
30 | 29 | oveq2d | |
31 | 1 2 | ltrnco | |
32 | 22 19 24 31 | syl3anc | |
33 | 1 2 3 4 | tgrpov | |
34 | 16 17 18 32 33 | syl112anc | |
35 | 30 34 | eqtrd | |
36 | 15 27 35 | 3eqtr4a | |
37 | 5 1 2 | idltrn | |
38 | simpll | |
|
39 | simplr | |
|
40 | 37 | adantr | |
41 | simpr | |
|
42 | 1 2 3 4 | tgrpov | |
43 | 38 39 40 41 42 | syl112anc | |
44 | 5 1 2 | ltrn1o | |
45 | f1of | |
|
46 | fcoi2 | |
|
47 | 44 45 46 | 3syl | |
48 | 43 47 | eqtrd | |
49 | 1 2 | ltrncnv | |
50 | 1 2 3 4 | tgrpov | |
51 | 38 39 49 41 50 | syl112anc | |
52 | f1ococnv1 | |
|
53 | 44 52 | syl | |
54 | 51 53 | eqtrd | |
55 | 8 9 14 36 37 48 49 54 | isgrpd | |