Metamath Proof Explorer


Theorem tgrpgrplem

Description: Lemma for tgrpgrp . (Contributed by NM, 6-Jun-2013)

Ref Expression
Hypotheses tgrpset.h H=LHypK
tgrpset.t T=LTrnKW
tgrpset.g G=TGrpKW
tgrp.o +˙=+G
tgrp.b B=BaseK
Assertion tgrpgrplem KHLWHGGrp

Proof

Step Hyp Ref Expression
1 tgrpset.h H=LHypK
2 tgrpset.t T=LTrnKW
3 tgrpset.g G=TGrpKW
4 tgrp.o +˙=+G
5 tgrp.b B=BaseK
6 eqid BaseG=BaseG
7 1 2 3 6 tgrpbase KHLWHBaseG=T
8 7 eqcomd KHLWHT=BaseG
9 4 a1i KHLWH+˙=+G
10 1 2 3 4 tgrpov KHLWHxTyTx+˙y=xy
11 10 3expa KHLWHxTyTx+˙y=xy
12 11 3impb KHLWHxTyTx+˙y=xy
13 1 2 ltrnco KHLWHxTyTxyT
14 12 13 eqeltrd KHLWHxTyTx+˙yT
15 coass xyz=xyz
16 simpll KHLWHxTyTzTKHL
17 simplr KHLWHxTyTzTWH
18 simpr1 KHLWHxTyTzTxT
19 simpr2 KHLWHxTyTzTyT
20 16 17 18 19 10 syl112anc KHLWHxTyTzTx+˙y=xy
21 20 oveq1d KHLWHxTyTzTx+˙y+˙z=xy+˙z
22 simpl KHLWHxTyTzTKHLWH
23 22 18 19 13 syl3anc KHLWHxTyTzTxyT
24 simpr3 KHLWHxTyTzTzT
25 1 2 3 4 tgrpov KHLWHxyTzTxy+˙z=xyz
26 16 17 23 24 25 syl112anc KHLWHxTyTzTxy+˙z=xyz
27 21 26 eqtrd KHLWHxTyTzTx+˙y+˙z=xyz
28 1 2 3 4 tgrpov KHLWHyTzTy+˙z=yz
29 16 17 19 24 28 syl112anc KHLWHxTyTzTy+˙z=yz
30 29 oveq2d KHLWHxTyTzTx+˙y+˙z=x+˙yz
31 1 2 ltrnco KHLWHyTzTyzT
32 22 19 24 31 syl3anc KHLWHxTyTzTyzT
33 1 2 3 4 tgrpov KHLWHxTyzTx+˙yz=xyz
34 16 17 18 32 33 syl112anc KHLWHxTyTzTx+˙yz=xyz
35 30 34 eqtrd KHLWHxTyTzTx+˙y+˙z=xyz
36 15 27 35 3eqtr4a KHLWHxTyTzTx+˙y+˙z=x+˙y+˙z
37 5 1 2 idltrn KHLWHIBT
38 simpll KHLWHxTKHL
39 simplr KHLWHxTWH
40 37 adantr KHLWHxTIBT
41 simpr KHLWHxTxT
42 1 2 3 4 tgrpov KHLWHIBTxTIB+˙x=IBx
43 38 39 40 41 42 syl112anc KHLWHxTIB+˙x=IBx
44 5 1 2 ltrn1o KHLWHxTx:B1-1 ontoB
45 f1of x:B1-1 ontoBx:BB
46 fcoi2 x:BBIBx=x
47 44 45 46 3syl KHLWHxTIBx=x
48 43 47 eqtrd KHLWHxTIB+˙x=x
49 1 2 ltrncnv KHLWHxTx-1T
50 1 2 3 4 tgrpov KHLWHx-1TxTx-1+˙x=x-1x
51 38 39 49 41 50 syl112anc KHLWHxTx-1+˙x=x-1x
52 f1ococnv1 x:B1-1 ontoBx-1x=IB
53 44 52 syl KHLWHxTx-1x=IB
54 51 53 eqtrd KHLWHxTx-1+˙x=IB
55 8 9 14 36 37 48 49 54 isgrpd KHLWHGGrp