Description: The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trclfvdecomr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | oveq1 | |
|
3 | 2 | iuneq2d | |
4 | dftrcl3 | |
|
5 | nnex | |
|
6 | ovex | |
|
7 | 5 6 | iunex | |
8 | 3 4 7 | fvmpt | |
9 | 1 8 | syl | |
10 | nnuz | |
|
11 | 2eluzge1 | |
|
12 | uzsplit | |
|
13 | 11 12 | ax-mp | |
14 | 2m1e1 | |
|
15 | 14 | oveq2i | |
16 | 1z | |
|
17 | fzsn | |
|
18 | 16 17 | ax-mp | |
19 | 15 18 | eqtri | |
20 | 19 | uneq1i | |
21 | 10 13 20 | 3eqtri | |
22 | iuneq1 | |
|
23 | 21 22 | ax-mp | |
24 | iunxun | |
|
25 | 1ex | |
|
26 | oveq2 | |
|
27 | 25 26 | iunxsn | |
28 | 27 | uneq1i | |
29 | 23 24 28 | 3eqtri | |
30 | relexp1g | |
|
31 | oveq1 | |
|
32 | 31 | iuneq2d | |
33 | dftrcl3 | |
|
34 | ovex | |
|
35 | 5 34 | iunex | |
36 | 32 33 35 | fvmpt | |
37 | 1 36 | syl | |
38 | 37 | coeq1d | |
39 | coiun1 | |
|
40 | uz2m1nn | |
|
41 | 40 | adantl | |
42 | eluzp1p1 | |
|
43 | 42 10 | eleq2s | |
44 | 1p1e2 | |
|
45 | 44 | fveq2i | |
46 | 43 45 | eleqtrdi | |
47 | 46 | adantl | |
48 | oveq2 | |
|
49 | 48 | coeq1d | |
50 | 49 | 3ad2ant3 | |
51 | oveq2 | |
|
52 | 51 | 3ad2ant3 | |
53 | relexpsucnnr | |
|
54 | 53 | eqcomd | |
55 | relexpsucnnr | |
|
56 | 40 55 | sylan2 | |
57 | eluzelcn | |
|
58 | npcan1 | |
|
59 | oveq2 | |
|
60 | 57 58 59 | 3syl | |
61 | 60 | eqeq1d | |
62 | 61 | adantl | |
63 | 56 62 | mpbid | |
64 | 41 47 50 52 54 63 | cbviuneq12dv | |
65 | 39 64 | eqtrid | |
66 | 38 65 | eqtrd | |
67 | 66 | eqcomd | |
68 | 30 67 | uneq12d | |
69 | 29 68 | eqtrid | |
70 | 9 69 | eqtrd | |