Metamath Proof Explorer


Theorem trclfvdecomr

Description: The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020)

Ref Expression
Assertion trclfvdecomr RVt+R=Rt+RR

Proof

Step Hyp Ref Expression
1 elex RVRV
2 oveq1 r=Rrrn=Rrn
3 2 iuneq2d r=Rnrrn=nRrn
4 dftrcl3 t+=rVnrrn
5 nnex V
6 ovex RrnV
7 5 6 iunex nRrnV
8 3 4 7 fvmpt RVt+R=nRrn
9 1 8 syl RVt+R=nRrn
10 nnuz =1
11 2eluzge1 21
12 uzsplit 211=1212
13 11 12 ax-mp 1=1212
14 2m1e1 21=1
15 14 oveq2i 121=11
16 1z 1
17 fzsn 111=1
18 16 17 ax-mp 11=1
19 15 18 eqtri 121=1
20 19 uneq1i 1212=12
21 10 13 20 3eqtri =12
22 iuneq1 =12nRrn=n12Rrn
23 21 22 ax-mp nRrn=n12Rrn
24 iunxun n12Rrn=n1Rrnn2Rrn
25 1ex 1V
26 oveq2 n=1Rrn=Rr1
27 25 26 iunxsn n1Rrn=Rr1
28 27 uneq1i n1Rrnn2Rrn=Rr1n2Rrn
29 23 24 28 3eqtri nRrn=Rr1n2Rrn
30 relexp1g RVRr1=R
31 oveq1 r=Rrrm=Rrm
32 31 iuneq2d r=Rmrrm=mRrm
33 dftrcl3 t+=rVmrrm
34 ovex RrmV
35 5 34 iunex mRrmV
36 32 33 35 fvmpt RVt+R=mRrm
37 1 36 syl RVt+R=mRrm
38 37 coeq1d RVt+RR=mRrmR
39 coiun1 mRrmR=mRrmR
40 uz2m1nn n2n1
41 40 adantl RVn2n1
42 eluzp1p1 m1m+11+1
43 42 10 eleq2s mm+11+1
44 1p1e2 1+1=2
45 44 fveq2i 1+1=2
46 43 45 eleqtrdi mm+12
47 46 adantl RVmm+12
48 oveq2 m=n1Rrm=Rrn1
49 48 coeq1d m=n1RrmR=Rrn1R
50 49 3ad2ant3 RVn2m=n1RrmR=Rrn1R
51 oveq2 n=m+1Rrn=Rrm+1
52 51 3ad2ant3 RVmn=m+1Rrn=Rrm+1
53 relexpsucnnr RVmRrm+1=RrmR
54 53 eqcomd RVmRrmR=Rrm+1
55 relexpsucnnr RVn1Rrn-1+1=Rrn1R
56 40 55 sylan2 RVn2Rrn-1+1=Rrn1R
57 eluzelcn n2n
58 npcan1 nn-1+1=n
59 oveq2 n-1+1=nRrn-1+1=Rrn
60 57 58 59 3syl n2Rrn-1+1=Rrn
61 60 eqeq1d n2Rrn-1+1=Rrn1RRrn=Rrn1R
62 61 adantl RVn2Rrn-1+1=Rrn1RRrn=Rrn1R
63 56 62 mpbid RVn2Rrn=Rrn1R
64 41 47 50 52 54 63 cbviuneq12dv RVmRrmR=n2Rrn
65 39 64 eqtrid RVmRrmR=n2Rrn
66 38 65 eqtrd RVt+RR=n2Rrn
67 66 eqcomd RVn2Rrn=t+RR
68 30 67 uneq12d RVRr1n2Rrn=Rt+RR
69 29 68 eqtrid RVnRrn=Rt+RR
70 9 69 eqtrd RVt+R=Rt+RR