Metamath Proof Explorer


Theorem trireciplem

Description: Lemma for trirecip . Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014) (Revised by Mario Carneiro, 22-May-2014)

Ref Expression
Hypothesis trireciplem.1 F=n1nn+1
Assertion trireciplem seq1+F1

Proof

Step Hyp Ref Expression
1 trireciplem.1 F=n1nn+1
2 nnuz =1
3 1zzd 1
4 1cnd 1
5 nnex V
6 5 mptex n1n+1V
7 6 a1i n1n+1V
8 oveq1 n=kn+1=k+1
9 8 oveq2d n=k1n+1=1k+1
10 eqid n1n+1=n1n+1
11 ovex 1k+1V
12 9 10 11 fvmpt kn1n+1k=1k+1
13 12 adantl kn1n+1k=1k+1
14 2 3 4 3 7 13 divcnvshft n1n+10
15 seqex seq1+FV
16 15 a1i seq1+FV
17 peano2nn kk+1
18 17 adantl kk+1
19 18 nnrecred k1k+1
20 19 recnd k1k+1
21 13 20 eqeltrd kn1n+1k
22 13 oveq2d k1n1n+1k=11k+1
23 elfznn j1kj
24 23 adantl kj1kj
25 24 nncnd kj1kj
26 peano2cn jj+1
27 25 26 syl kj1kj+1
28 peano2nn jj+1
29 24 28 syl kj1kj+1
30 24 29 nnmulcld kj1kjj+1
31 30 nncnd kj1kjj+1
32 30 nnne0d kj1kjj+10
33 27 25 31 32 divsubdird kj1kj+1-jjj+1=j+1jj+1jjj+1
34 ax-1cn 1
35 pncan2 j1j+1-j=1
36 25 34 35 sylancl kj1kj+1-j=1
37 36 oveq1d kj1kj+1-jjj+1=1jj+1
38 27 mulridd kj1kj+11=j+1
39 27 25 mulcomd kj1kj+1j=jj+1
40 38 39 oveq12d kj1kj+11j+1j=j+1jj+1
41 1cnd kj1k1
42 24 nnne0d kj1kj0
43 29 nnne0d kj1kj+10
44 41 25 27 42 43 divcan5d kj1kj+11j+1j=1j
45 40 44 eqtr3d kj1kj+1jj+1=1j
46 25 mulridd kj1kj1=j
47 46 oveq1d kj1kj1jj+1=jjj+1
48 41 27 25 43 42 divcan5d kj1kj1jj+1=1j+1
49 47 48 eqtr3d kj1kjjj+1=1j+1
50 45 49 oveq12d kj1kj+1jj+1jjj+1=1j1j+1
51 33 37 50 3eqtr3d kj1k1jj+1=1j1j+1
52 51 sumeq2dv kj=1k1jj+1=j=1k1j1j+1
53 oveq2 n=j1n=1j
54 oveq2 n=j+11n=1j+1
55 oveq2 n=11n=11
56 1div1e1 11=1
57 55 56 eqtrdi n=11n=1
58 oveq2 n=k+11n=1k+1
59 nnz kk
60 59 adantl kk
61 18 2 eleqtrdi kk+11
62 elfznn n1k+1n
63 62 adantl kn1k+1n
64 63 nnrecred kn1k+11n
65 64 recnd kn1k+11n
66 53 54 57 58 60 61 65 telfsum kj=1k1j1j+1=11k+1
67 52 66 eqtrd kj=1k1jj+1=11k+1
68 id n=jn=j
69 oveq1 n=jn+1=j+1
70 68 69 oveq12d n=jnn+1=jj+1
71 70 oveq2d n=j1nn+1=1jj+1
72 ovex 1jj+1V
73 71 1 72 fvmpt jFj=1jj+1
74 24 73 syl kj1kFj=1jj+1
75 simpr kk
76 75 2 eleqtrdi kk1
77 30 nnrecred kj1k1jj+1
78 77 recnd kj1k1jj+1
79 74 76 78 fsumser kj=1k1jj+1=seq1+Fk
80 22 67 79 3eqtr2rd kseq1+Fk=1n1n+1k
81 2 3 14 4 16 21 80 climsubc2 seq1+F10
82 81 mptru seq1+F10
83 1m0e1 10=1
84 82 83 breqtri seq1+F1