| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlcone.b |
|
| 2 |
|
trlcone.h |
|
| 3 |
|
trlcone.t |
|
| 4 |
|
trlcone.r |
|
| 5 |
|
simpl3l |
|
| 6 |
|
simp11 |
|
| 7 |
|
simp12l |
|
| 8 |
2 3
|
ltrncnv |
|
| 9 |
6 7 8
|
syl2anc |
|
| 10 |
|
simp12r |
|
| 11 |
2 3
|
ltrnco |
|
| 12 |
6 7 10 11
|
syl3anc |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 14 2 3 4
|
trlco |
|
| 16 |
6 9 12 15
|
syl3anc |
|
| 17 |
1 2 3
|
ltrn1o |
|
| 18 |
6 7 17
|
syl2anc |
|
| 19 |
|
f1ococnv1 |
|
| 20 |
18 19
|
syl |
|
| 21 |
20
|
coeq1d |
|
| 22 |
1 2 3
|
ltrn1o |
|
| 23 |
6 10 22
|
syl2anc |
|
| 24 |
|
f1of |
|
| 25 |
|
fcoi2 |
|
| 26 |
23 24 25
|
3syl |
|
| 27 |
21 26
|
eqtrd |
|
| 28 |
|
coass |
|
| 29 |
27 28
|
eqtr3di |
|
| 30 |
29
|
fveq2d |
|
| 31 |
|
simp11l |
|
| 32 |
|
simp2 |
|
| 33 |
|
eqid |
|
| 34 |
14 33
|
hlatjidm |
|
| 35 |
31 32 34
|
syl2anc |
|
| 36 |
2 3 4
|
trlcnv |
|
| 37 |
6 7 36
|
syl2anc |
|
| 38 |
37
|
eqcomd |
|
| 39 |
|
simp3 |
|
| 40 |
38 39
|
oveq12d |
|
| 41 |
35 40
|
eqtr3d |
|
| 42 |
16 30 41
|
3brtr4d |
|
| 43 |
|
hlatl |
|
| 44 |
31 43
|
syl |
|
| 45 |
|
simp13r |
|
| 46 |
1 33 2 3 4
|
trlnidat |
|
| 47 |
6 10 45 46
|
syl3anc |
|
| 48 |
13 33
|
atcmp |
|
| 49 |
44 47 32 48
|
syl3anc |
|
| 50 |
42 49
|
mpbid |
|
| 51 |
50
|
eqcomd |
|
| 52 |
51
|
3expia |
|
| 53 |
52
|
necon3d |
|
| 54 |
5 53
|
mpd |
|
| 55 |
|
simpl3r |
|
| 56 |
|
simpl1 |
|
| 57 |
|
simpl2r |
|
| 58 |
|
eqid |
|
| 59 |
1 58 2 3 4
|
trlid0b |
|
| 60 |
56 57 59
|
syl2anc |
|
| 61 |
60
|
necon3bid |
|
| 62 |
55 61
|
mpbid |
|
| 63 |
62
|
necomd |
|
| 64 |
|
simpr |
|
| 65 |
|
simpl2l |
|
| 66 |
1 58 2 3 4
|
trlid0b |
|
| 67 |
56 65 66
|
syl2anc |
|
| 68 |
64 67
|
mpbird |
|
| 69 |
68
|
coeq1d |
|
| 70 |
56 57 22
|
syl2anc |
|
| 71 |
70 24 25
|
3syl |
|
| 72 |
69 71
|
eqtrd |
|
| 73 |
72
|
fveq2d |
|
| 74 |
63 64 73
|
3netr4d |
|
| 75 |
|
simp1 |
|
| 76 |
|
simp2l |
|
| 77 |
58 33 2 3 4
|
trlator0 |
|
| 78 |
75 76 77
|
syl2anc |
|
| 79 |
54 74 78
|
mpjaodan |
|