Description: The ordering of two Hilbert lattice elements (under the fiducial hyperplane W ) is determined by the translations whose traces are under them. (Contributed by NM, 3-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | trlord.b | |
|
trlord.l | |
||
trlord.a | |
||
trlord.h | |
||
trlord.t | |
||
trlord.r | |
||
Assertion | trlord | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlord.b | |
|
2 | trlord.l | |
|
3 | trlord.a | |
|
4 | trlord.h | |
|
5 | trlord.t | |
|
6 | trlord.r | |
|
7 | simpl1l | |
|
8 | 7 | hllatd | |
9 | simpl1 | |
|
10 | simprlr | |
|
11 | 1 4 5 6 | trlcl | |
12 | 9 10 11 | syl2anc | |
13 | simpl2l | |
|
14 | simpl3l | |
|
15 | simprr | |
|
16 | simprll | |
|
17 | 1 2 8 12 13 14 15 16 | lattrd | |
18 | 17 | exp44 | |
19 | 18 | ralrimdv | |
20 | simp11l | |
|
21 | 20 | hllatd | |
22 | simp2r | |
|
23 | 1 3 | atbase | |
24 | 22 23 | syl | |
25 | simp12l | |
|
26 | simp11r | |
|
27 | 1 4 | lhpbase | |
28 | 26 27 | syl | |
29 | simp3 | |
|
30 | simp12r | |
|
31 | 1 2 21 24 25 28 29 30 | lattrd | |
32 | 31 29 | jca | |
33 | 32 | 3expia | |
34 | simp11 | |
|
35 | simp2r | |
|
36 | simp3 | |
|
37 | 2 3 4 5 6 | cdlemf | |
38 | 34 35 36 37 | syl12anc | |
39 | simp2l | |
|
40 | fveq2 | |
|
41 | 40 | breq1d | |
42 | 40 | breq1d | |
43 | 41 42 | imbi12d | |
44 | 43 | rspccv | |
45 | 39 44 | syl | |
46 | breq1 | |
|
47 | breq1 | |
|
48 | 46 47 | imbi12d | |
49 | 48 | biimpcd | |
50 | 45 49 | syl6 | |
51 | 50 | rexlimdv | |
52 | 38 51 | mpd | |
53 | 52 | 3expia | |
54 | 53 | impd | |
55 | 33 54 | syld | |
56 | 55 | exp32 | |
57 | 56 | ralrimdv | |
58 | simp1l | |
|
59 | simp2l | |
|
60 | simp3l | |
|
61 | 1 2 3 | hlatle | |
62 | 58 59 60 61 | syl3anc | |
63 | 57 62 | sylibrd | |
64 | 19 63 | impbid | |