Metamath Proof Explorer


Theorem trlord

Description: The ordering of two Hilbert lattice elements (under the fiducial hyperplane W ) is determined by the translations whose traces are under them. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses trlord.b B=BaseK
trlord.l ˙=K
trlord.a A=AtomsK
trlord.h H=LHypK
trlord.t T=LTrnKW
trlord.r R=trLKW
Assertion trlord KHLWHXBX˙WYBY˙WX˙YfTRf˙XRf˙Y

Proof

Step Hyp Ref Expression
1 trlord.b B=BaseK
2 trlord.l ˙=K
3 trlord.a A=AtomsK
4 trlord.h H=LHypK
5 trlord.t T=LTrnKW
6 trlord.r R=trLKW
7 simpl1l KHLWHXBX˙WYBY˙WX˙YfTRf˙XKHL
8 7 hllatd KHLWHXBX˙WYBY˙WX˙YfTRf˙XKLat
9 simpl1 KHLWHXBX˙WYBY˙WX˙YfTRf˙XKHLWH
10 simprlr KHLWHXBX˙WYBY˙WX˙YfTRf˙XfT
11 1 4 5 6 trlcl KHLWHfTRfB
12 9 10 11 syl2anc KHLWHXBX˙WYBY˙WX˙YfTRf˙XRfB
13 simpl2l KHLWHXBX˙WYBY˙WX˙YfTRf˙XXB
14 simpl3l KHLWHXBX˙WYBY˙WX˙YfTRf˙XYB
15 simprr KHLWHXBX˙WYBY˙WX˙YfTRf˙XRf˙X
16 simprll KHLWHXBX˙WYBY˙WX˙YfTRf˙XX˙Y
17 1 2 8 12 13 14 15 16 lattrd KHLWHXBX˙WYBY˙WX˙YfTRf˙XRf˙Y
18 17 exp44 KHLWHXBX˙WYBY˙WX˙YfTRf˙XRf˙Y
19 18 ralrimdv KHLWHXBX˙WYBY˙WX˙YfTRf˙XRf˙Y
20 simp11l KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙XKHL
21 20 hllatd KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙XKLat
22 simp2r KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙XuA
23 1 3 atbase uAuB
24 22 23 syl KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙XuB
25 simp12l KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙XXB
26 simp11r KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙XWH
27 1 4 lhpbase WHWB
28 26 27 syl KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙XWB
29 simp3 KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Xu˙X
30 simp12r KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙XX˙W
31 1 2 21 24 25 28 29 30 lattrd KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Xu˙W
32 31 29 jca KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Xu˙Wu˙X
33 32 3expia KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Xu˙Wu˙X
34 simp11 KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙WKHLWH
35 simp2r KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙WuA
36 simp3 KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Wu˙W
37 2 3 4 5 6 cdlemf KHLWHuAu˙WgTRg=u
38 34 35 36 37 syl12anc KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙WgTRg=u
39 simp2l KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙WfTRf˙XRf˙Y
40 fveq2 f=gRf=Rg
41 40 breq1d f=gRf˙XRg˙X
42 40 breq1d f=gRf˙YRg˙Y
43 41 42 imbi12d f=gRf˙XRf˙YRg˙XRg˙Y
44 43 rspccv fTRf˙XRf˙YgTRg˙XRg˙Y
45 39 44 syl KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙WgTRg˙XRg˙Y
46 breq1 Rg=uRg˙Xu˙X
47 breq1 Rg=uRg˙Yu˙Y
48 46 47 imbi12d Rg=uRg˙XRg˙Yu˙Xu˙Y
49 48 biimpcd Rg˙XRg˙YRg=uu˙Xu˙Y
50 45 49 syl6 KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙WgTRg=uu˙Xu˙Y
51 50 rexlimdv KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙WgTRg=uu˙Xu˙Y
52 38 51 mpd KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Wu˙Xu˙Y
53 52 3expia KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Wu˙Xu˙Y
54 53 impd KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Wu˙Xu˙Y
55 33 54 syld KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Xu˙Y
56 55 exp32 KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Xu˙Y
57 56 ralrimdv KHLWHXBX˙WYBY˙WfTRf˙XRf˙YuAu˙Xu˙Y
58 simp1l KHLWHXBX˙WYBY˙WKHL
59 simp2l KHLWHXBX˙WYBY˙WXB
60 simp3l KHLWHXBX˙WYBY˙WYB
61 1 2 3 hlatle KHLXBYBX˙YuAu˙Xu˙Y
62 58 59 60 61 syl3anc KHLWHXBX˙WYBY˙WX˙YuAu˙Xu˙Y
63 57 62 sylibrd KHLWHXBX˙WYBY˙WfTRf˙XRf˙YX˙Y
64 19 63 impbid KHLWHXBX˙WYBY˙WX˙YfTRf˙XRf˙Y