| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trsp2cyc.t |
|
| 2 |
|
trsp2cyc.c |
|
| 3 |
|
simplr |
|
| 4 |
|
breq1 |
|
| 5 |
4
|
elrab |
|
| 6 |
3 5
|
sylib |
|
| 7 |
6
|
simprd |
|
| 8 |
|
en2 |
|
| 9 |
7 8
|
syl |
|
| 10 |
6
|
simpld |
|
| 11 |
10
|
elpwid |
|
| 12 |
11
|
adantr |
|
| 13 |
|
vex |
|
| 14 |
13
|
prid1 |
|
| 15 |
|
simpr |
|
| 16 |
14 15
|
eleqtrrid |
|
| 17 |
12 16
|
sseldd |
|
| 18 |
|
vex |
|
| 19 |
18
|
prid2 |
|
| 20 |
19 15
|
eleqtrrid |
|
| 21 |
12 20
|
sseldd |
|
| 22 |
7
|
adantr |
|
| 23 |
15 22
|
eqbrtrrd |
|
| 24 |
|
pr2ne |
|
| 25 |
24
|
biimpa |
|
| 26 |
17 21 23 25
|
syl21anc |
|
| 27 |
|
simplr |
|
| 28 |
|
simp-4l |
|
| 29 |
|
eqid |
|
| 30 |
29
|
pmtrval |
|
| 31 |
28 12 22 30
|
syl3anc |
|
| 32 |
15
|
fveq2d |
|
| 33 |
27 31 32
|
3eqtr2d |
|
| 34 |
2 28 17 21 26 29
|
cycpm2tr |
|
| 35 |
33 34
|
eqtr4d |
|
| 36 |
26 35
|
jca |
|
| 37 |
17 21 36
|
jca31 |
|
| 38 |
37
|
ex |
|
| 39 |
38
|
2eximdv |
|
| 40 |
9 39
|
mpd |
|
| 41 |
|
r2ex |
|
| 42 |
40 41
|
sylibr |
|
| 43 |
|
simpr |
|
| 44 |
29
|
pmtrfval |
|
| 45 |
44
|
adantr |
|
| 46 |
45
|
rneqd |
|
| 47 |
1 46
|
eqtrid |
|
| 48 |
43 47
|
eleqtrd |
|
| 49 |
|
eqid |
|
| 50 |
49
|
elrnmpt |
|
| 51 |
50
|
adantl |
|
| 52 |
48 51
|
mpbid |
|
| 53 |
42 52
|
r19.29a |
|