Metamath Proof Explorer


Theorem trsp2cyc

Description: Exhibit the word a transposition corresponds to, as a cycle. (Contributed by Thierry Arnoux, 25-Sep-2023)

Ref Expression
Hypotheses trsp2cyc.t T = ran pmTrsp D
trsp2cyc.c C = toCyc D
Assertion trsp2cyc D V P T i D j D i j P = C ⟨“ ij ”⟩

Proof

Step Hyp Ref Expression
1 trsp2cyc.t T = ran pmTrsp D
2 trsp2cyc.c C = toCyc D
3 simplr D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p y 𝒫 D | y 2 𝑜
4 breq1 y = p y 2 𝑜 p 2 𝑜
5 4 elrab p y 𝒫 D | y 2 𝑜 p 𝒫 D p 2 𝑜
6 3 5 sylib D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p 𝒫 D p 2 𝑜
7 6 simprd D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p 2 𝑜
8 en2 p 2 𝑜 i j p = i j
9 7 8 syl D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z i j p = i j
10 6 simpld D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p 𝒫 D
11 10 elpwid D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p D
12 11 adantr D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j p D
13 vex i V
14 13 prid1 i i j
15 simpr D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j p = i j
16 14 15 eleqtrrid D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j i p
17 12 16 sseldd D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j i D
18 vex j V
19 18 prid2 j i j
20 19 15 eleqtrrid D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j j p
21 12 20 sseldd D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j j D
22 7 adantr D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j p 2 𝑜
23 15 22 eqbrtrrd D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j i j 2 𝑜
24 pr2ne i D j D i j 2 𝑜 i j
25 24 biimpa i D j D i j 2 𝑜 i j
26 17 21 23 25 syl21anc D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j i j
27 simplr D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j P = z D if z p p z z
28 simp-4l D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j D V
29 eqid pmTrsp D = pmTrsp D
30 29 pmtrval D V p D p 2 𝑜 pmTrsp D p = z D if z p p z z
31 28 12 22 30 syl3anc D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j pmTrsp D p = z D if z p p z z
32 15 fveq2d D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j pmTrsp D p = pmTrsp D i j
33 27 31 32 3eqtr2d D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j P = pmTrsp D i j
34 2 28 17 21 26 29 cycpm2tr D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j C ⟨“ ij ”⟩ = pmTrsp D i j
35 33 34 eqtr4d D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j P = C ⟨“ ij ”⟩
36 26 35 jca D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j i j P = C ⟨“ ij ”⟩
37 17 21 36 jca31 D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j i D j D i j P = C ⟨“ ij ”⟩
38 37 ex D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z p = i j i D j D i j P = C ⟨“ ij ”⟩
39 38 2eximdv D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z i j p = i j i j i D j D i j P = C ⟨“ ij ”⟩
40 9 39 mpd D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z i j i D j D i j P = C ⟨“ ij ”⟩
41 r2ex i D j D i j P = C ⟨“ ij ”⟩ i j i D j D i j P = C ⟨“ ij ”⟩
42 40 41 sylibr D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z i D j D i j P = C ⟨“ ij ”⟩
43 simpr D V P T P T
44 29 pmtrfval D V pmTrsp D = p y 𝒫 D | y 2 𝑜 z D if z p p z z
45 44 adantr D V P T pmTrsp D = p y 𝒫 D | y 2 𝑜 z D if z p p z z
46 45 rneqd D V P T ran pmTrsp D = ran p y 𝒫 D | y 2 𝑜 z D if z p p z z
47 1 46 syl5eq D V P T T = ran p y 𝒫 D | y 2 𝑜 z D if z p p z z
48 43 47 eleqtrd D V P T P ran p y 𝒫 D | y 2 𝑜 z D if z p p z z
49 eqid p y 𝒫 D | y 2 𝑜 z D if z p p z z = p y 𝒫 D | y 2 𝑜 z D if z p p z z
50 49 elrnmpt P T P ran p y 𝒫 D | y 2 𝑜 z D if z p p z z p y 𝒫 D | y 2 𝑜 P = z D if z p p z z
51 50 adantl D V P T P ran p y 𝒫 D | y 2 𝑜 z D if z p p z z p y 𝒫 D | y 2 𝑜 P = z D if z p p z z
52 48 51 mpbid D V P T p y 𝒫 D | y 2 𝑜 P = z D if z p p z z
53 42 52 r19.29a D V P T i D j D i j P = C ⟨“ ij ”⟩