Metamath Proof Explorer


Theorem tsrdir

Description: A totally ordered set is a directed set. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Assertion tsrdir ATosetRelADirRel

Proof

Step Hyp Ref Expression
1 tsrps ATosetRelAPosetRel
2 psrel APosetRelRelA
3 1 2 syl ATosetRelRelA
4 psref2 APosetRelAA-1=IA
5 inss1 AA-1A
6 4 5 eqsstrrdi APosetRelIAA
7 1 6 syl ATosetRelIAA
8 3 7 jca ATosetRelRelAIAA
9 pstr2 APosetRelAAA
10 1 9 syl ATosetRelAAA
11 psdmrn APosetReldomA=AranA=A
12 1 11 syl ATosetReldomA=AranA=A
13 12 simpld ATosetReldomA=A
14 13 sqxpeqd ATosetReldomA×domA=A×A
15 eqid domA=domA
16 15 istsr ATosetRelAPosetReldomA×domAAA-1
17 16 simprbi ATosetReldomA×domAAA-1
18 relcoi2 RelAIAA=A
19 3 18 syl ATosetRelIAA=A
20 cnvresid IA-1=IA
21 cnvss IAAIA-1A-1
22 7 21 syl ATosetRelIA-1A-1
23 20 22 eqsstrrid ATosetRelIAA-1
24 coss1 IAA-1IAAA-1A
25 23 24 syl ATosetRelIAAA-1A
26 19 25 eqsstrrd ATosetRelAA-1A
27 relcnv RelA-1
28 relcoi1 RelA-1A-1IA-1=A-1
29 27 28 ax-mp A-1IA-1=A-1
30 relcnvfld RelAA=A-1
31 3 30 syl ATosetRelA=A-1
32 31 reseq2d ATosetRelIA=IA-1
33 32 7 eqsstrrd ATosetRelIA-1A
34 coss2 IA-1AA-1IA-1A-1A
35 33 34 syl ATosetRelA-1IA-1A-1A
36 29 35 eqsstrrid ATosetRelA-1A-1A
37 26 36 unssd ATosetRelAA-1A-1A
38 17 37 sstrd ATosetReldomA×domAA-1A
39 14 38 eqsstrrd ATosetRelA×AA-1A
40 10 39 jca ATosetRelAAAA×AA-1A
41 eqid A=A
42 41 isdir ATosetRelADirRelRelAIAAAAAA×AA-1A
43 8 40 42 mpbir2and ATosetRelADirRel