Metamath Proof Explorer


Theorem txrest

Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion txrest RVSWAXBYR×tS𝑡A×B=R𝑡A×tS𝑡B

Proof

Step Hyp Ref Expression
1 eqid ranrR,sSr×s=ranrR,sSr×s
2 1 txval RVSWR×tS=topGenranrR,sSr×s
3 2 adantr RVSWAXBYR×tS=topGenranrR,sSr×s
4 3 oveq1d RVSWAXBYR×tS𝑡A×B=topGenranrR,sSr×s𝑡A×B
5 1 txbasex RVSWranrR,sSr×sV
6 xpexg AXBYA×BV
7 tgrest ranrR,sSr×sVA×BVtopGenranrR,sSr×s𝑡A×B=topGenranrR,sSr×s𝑡A×B
8 5 6 7 syl2an RVSWAXBYtopGenranrR,sSr×s𝑡A×B=topGenranrR,sSr×s𝑡A×B
9 elrest ranrR,sSr×sVA×BVxranrR,sSr×s𝑡A×BwranrR,sSr×sx=wA×B
10 5 6 9 syl2an RVSWAXBYxranrR,sSr×s𝑡A×BwranrR,sSr×sx=wA×B
11 vex rV
12 11 inex1 rAV
13 12 a1i RVSWAXBYrRrAV
14 elrest RVAXuR𝑡ArRu=rA
15 14 ad2ant2r RVSWAXBYuR𝑡ArRu=rA
16 xpeq1 u=rAu×v=rA×v
17 16 eqeq2d u=rAx=u×vx=rA×v
18 17 rexbidv u=rAvS𝑡Bx=u×vvS𝑡Bx=rA×v
19 vex sV
20 19 inex1 sBV
21 20 a1i RVSWAXBYsSsBV
22 elrest SWBYvS𝑡BsSv=sB
23 22 ad2ant2l RVSWAXBYvS𝑡BsSv=sB
24 xpeq2 v=sBrA×v=rA×sB
25 24 eqeq2d v=sBx=rA×vx=rA×sB
26 25 adantl RVSWAXBYv=sBx=rA×vx=rA×sB
27 21 23 26 rexxfr2d RVSWAXBYvS𝑡Bx=rA×vsSx=rA×sB
28 18 27 sylan9bbr RVSWAXBYu=rAvS𝑡Bx=u×vsSx=rA×sB
29 13 15 28 rexxfr2d RVSWAXBYuR𝑡AvS𝑡Bx=u×vrRsSx=rA×sB
30 11 19 xpex r×sV
31 30 rgen2w rRsSr×sV
32 eqid rR,sSr×s=rR,sSr×s
33 ineq1 w=r×swA×B=r×sA×B
34 inxp r×sA×B=rA×sB
35 33 34 eqtrdi w=r×swA×B=rA×sB
36 35 eqeq2d w=r×sx=wA×Bx=rA×sB
37 32 36 rexrnmpo rRsSr×sVwranrR,sSr×sx=wA×BrRsSx=rA×sB
38 31 37 ax-mp wranrR,sSr×sx=wA×BrRsSx=rA×sB
39 29 38 bitr4di RVSWAXBYuR𝑡AvS𝑡Bx=u×vwranrR,sSr×sx=wA×B
40 10 39 bitr4d RVSWAXBYxranrR,sSr×s𝑡A×BuR𝑡AvS𝑡Bx=u×v
41 40 eqabdv RVSWAXBYranrR,sSr×s𝑡A×B=x|uR𝑡AvS𝑡Bx=u×v
42 eqid uR𝑡A,vS𝑡Bu×v=uR𝑡A,vS𝑡Bu×v
43 42 rnmpo ranuR𝑡A,vS𝑡Bu×v=x|uR𝑡AvS𝑡Bx=u×v
44 41 43 eqtr4di RVSWAXBYranrR,sSr×s𝑡A×B=ranuR𝑡A,vS𝑡Bu×v
45 44 fveq2d RVSWAXBYtopGenranrR,sSr×s𝑡A×B=topGenranuR𝑡A,vS𝑡Bu×v
46 4 8 45 3eqtr2d RVSWAXBYR×tS𝑡A×B=topGenranuR𝑡A,vS𝑡Bu×v
47 ovex R𝑡AV
48 ovex S𝑡BV
49 eqid ranuR𝑡A,vS𝑡Bu×v=ranuR𝑡A,vS𝑡Bu×v
50 49 txval R𝑡AVS𝑡BVR𝑡A×tS𝑡B=topGenranuR𝑡A,vS𝑡Bu×v
51 47 48 50 mp2an R𝑡A×tS𝑡B=topGenranuR𝑡A,vS𝑡Bu×v
52 46 51 eqtr4di RVSWAXBYR×tS𝑡A×B=R𝑡A×tS𝑡B