Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | txrest | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | txval | |
3 | 2 | adantr | |
4 | 3 | oveq1d | |
5 | 1 | txbasex | |
6 | xpexg | |
|
7 | tgrest | |
|
8 | 5 6 7 | syl2an | |
9 | elrest | |
|
10 | 5 6 9 | syl2an | |
11 | vex | |
|
12 | 11 | inex1 | |
13 | 12 | a1i | |
14 | elrest | |
|
15 | 14 | ad2ant2r | |
16 | xpeq1 | |
|
17 | 16 | eqeq2d | |
18 | 17 | rexbidv | |
19 | vex | |
|
20 | 19 | inex1 | |
21 | 20 | a1i | |
22 | elrest | |
|
23 | 22 | ad2ant2l | |
24 | xpeq2 | |
|
25 | 24 | eqeq2d | |
26 | 25 | adantl | |
27 | 21 23 26 | rexxfr2d | |
28 | 18 27 | sylan9bbr | |
29 | 13 15 28 | rexxfr2d | |
30 | 11 19 | xpex | |
31 | 30 | rgen2w | |
32 | eqid | |
|
33 | ineq1 | |
|
34 | inxp | |
|
35 | 33 34 | eqtrdi | |
36 | 35 | eqeq2d | |
37 | 32 36 | rexrnmpo | |
38 | 31 37 | ax-mp | |
39 | 29 38 | bitr4di | |
40 | 10 39 | bitr4d | |
41 | 40 | eqabdv | |
42 | eqid | |
|
43 | 42 | rnmpo | |
44 | 41 43 | eqtr4di | |
45 | 44 | fveq2d | |
46 | 4 8 45 | 3eqtr2d | |
47 | ovex | |
|
48 | ovex | |
|
49 | eqid | |
|
50 | 49 | txval | |
51 | 47 48 50 | mp2an | |
52 | 46 51 | eqtr4di | |