Metamath Proof Explorer


Theorem uhgrimedgi

Description: An isomorphism between graphs preserves edges, i.e. if there is an edge in one graph connecting vertices then there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025)

Ref Expression
Hypotheses uhgrimedgi.e E = Edg G
uhgrimedgi.d D = Edg H
Assertion uhgrimedgi G UHGraph H UHGraph F G GraphIso H K E F K D

Proof

Step Hyp Ref Expression
1 uhgrimedgi.e E = Edg G
2 uhgrimedgi.d D = Edg H
3 eqid Vtx G = Vtx G
4 eqid Vtx H = Vtx H
5 eqid iEdg G = iEdg G
6 eqid iEdg H = iEdg H
7 3 4 5 6 grimprop F G GraphIso H F : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i
8 1 eleq2i K E K Edg G
9 5 uhgrfun G UHGraph Fun iEdg G
10 5 edgiedgb Fun iEdg G K Edg G k dom iEdg G K = iEdg G k
11 9 10 syl G UHGraph K Edg G k dom iEdg G K = iEdg G k
12 8 11 bitrid G UHGraph K E k dom iEdg G K = iEdg G k
13 12 adantr G UHGraph H UHGraph K E k dom iEdg G K = iEdg G k
14 simplr G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H k dom iEdg G
15 2fveq3 i = k iEdg H j i = iEdg H j k
16 fveq2 i = k iEdg G i = iEdg G k
17 16 imaeq2d i = k F iEdg G i = F iEdg G k
18 15 17 eqeq12d i = k iEdg H j i = F iEdg G i iEdg H j k = F iEdg G k
19 18 rspcv k dom iEdg G i dom iEdg G iEdg H j i = F iEdg G i iEdg H j k = F iEdg G k
20 14 19 syl G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H i dom iEdg G iEdg H j i = F iEdg G i iEdg H j k = F iEdg G k
21 6 uhgrfun H UHGraph Fun iEdg H
22 21 ad3antlr G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H Fun iEdg H
23 f1of j : dom iEdg G 1-1 onto dom iEdg H j : dom iEdg G dom iEdg H
24 23 adantl G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H j : dom iEdg G dom iEdg H
25 14 adantr G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H k dom iEdg G
26 24 25 ffvelcdmd G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H j k dom iEdg H
27 6 iedgedg Fun iEdg H j k dom iEdg H iEdg H j k Edg H
28 22 26 27 syl2an2r G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H iEdg H j k Edg H
29 28 2 eleqtrrdi G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H iEdg H j k D
30 eleq1 F iEdg G k = iEdg H j k F iEdg G k D iEdg H j k D
31 30 eqcoms iEdg H j k = F iEdg G k F iEdg G k D iEdg H j k D
32 29 31 syl5ibrcom G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H iEdg H j k = F iEdg G k F iEdg G k D
33 32 ex G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H iEdg H j k = F iEdg G k F iEdg G k D
34 20 33 syl5d G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F iEdg G k D
35 34 impd G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F iEdg G k D
36 35 ex G UHGraph H UHGraph k dom iEdg G F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F iEdg G k D
37 36 adantr G UHGraph H UHGraph k dom iEdg G K = iEdg G k F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F iEdg G k D
38 37 3imp G UHGraph H UHGraph k dom iEdg G K = iEdg G k F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F iEdg G k D
39 imaeq2 K = iEdg G k F K = F iEdg G k
40 39 eleq1d K = iEdg G k F K D F iEdg G k D
41 40 adantl G UHGraph H UHGraph k dom iEdg G K = iEdg G k F K D F iEdg G k D
42 41 3ad2ant1 G UHGraph H UHGraph k dom iEdg G K = iEdg G k F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F K D F iEdg G k D
43 38 42 mpbird G UHGraph H UHGraph k dom iEdg G K = iEdg G k F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F K D
44 43 3exp G UHGraph H UHGraph k dom iEdg G K = iEdg G k F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F K D
45 44 ex G UHGraph H UHGraph k dom iEdg G K = iEdg G k F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F K D
46 45 rexlimdva G UHGraph H UHGraph k dom iEdg G K = iEdg G k F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F K D
47 13 46 sylbid G UHGraph H UHGraph K E F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F K D
48 47 imp G UHGraph H UHGraph K E F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F K D
49 48 imp G UHGraph H UHGraph K E F : Vtx G 1-1 onto Vtx H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F K D
50 49 exlimdv G UHGraph H UHGraph K E F : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F K D
51 50 expimpd G UHGraph H UHGraph K E F : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i F K D
52 7 51 syl5 G UHGraph H UHGraph K E F G GraphIso H F K D
53 52 ex G UHGraph H UHGraph K E F G GraphIso H F K D
54 53 impcomd G UHGraph H UHGraph F G GraphIso H K E F K D
55 54 imp G UHGraph H UHGraph F G GraphIso H K E F K D