Metamath Proof Explorer


Theorem uhgrvd00

Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018) (Revised by AV, 24-Dec-2020)

Ref Expression
Hypotheses vtxdusgradjvtx.v V=VtxG
vtxdusgradjvtx.e E=EdgG
Assertion uhgrvd00 GUHGraphvVVtxDegGv=0E=

Proof

Step Hyp Ref Expression
1 vtxdusgradjvtx.v V=VtxG
2 vtxdusgradjvtx.e E=EdgG
3 eqid VtxDegG=VtxDegG
4 1 2 3 vtxduhgr0edgnel GUHGraphvVVtxDegGv=0¬eEve
5 ralnex eE¬ve¬eEve
6 4 5 bitr4di GUHGraphvVVtxDegGv=0eE¬ve
7 6 ralbidva GUHGraphvVVtxDegGv=0vVeE¬ve
8 ralcom vVeE¬veeEvV¬ve
9 ralnex2 eEvV¬ve¬eEvVve
10 8 9 bitri vVeE¬ve¬eEvVve
11 simpr GUHGrapheEeE
12 2 eleq2i eEeEdgG
13 uhgredgn0 GUHGrapheEdgGe𝒫VtxG
14 12 13 sylan2b GUHGrapheEe𝒫VtxG
15 eldifsn e𝒫VtxGe𝒫VtxGe
16 elpwi e𝒫VtxGeVtxG
17 1 sseq2i eVeVtxG
18 ssn0rex eVevVve
19 18 ex eVevVve
20 17 19 sylbir eVtxGevVve
21 16 20 syl e𝒫VtxGevVve
22 21 imp e𝒫VtxGevVve
23 15 22 sylbi e𝒫VtxGvVve
24 14 23 syl GUHGrapheEvVve
25 11 24 jca GUHGrapheEeEvVve
26 25 ex GUHGrapheEeEvVve
27 26 eximdv GUHGrapheeEeeEvVve
28 n0 EeeE
29 df-rex eEvVveeeEvVve
30 27 28 29 3imtr4g GUHGraphEeEvVve
31 30 con3d GUHGraph¬eEvVve¬E
32 10 31 biimtrid GUHGraphvVeE¬ve¬E
33 nne ¬EE=
34 32 33 imbitrdi GUHGraphvVeE¬veE=
35 7 34 sylbid GUHGraphvVVtxDegGv=0E=