Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018) (Revised by AV, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vtxdusgradjvtx.v | |
|
vtxdusgradjvtx.e | |
||
Assertion | uhgrvd00 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdusgradjvtx.v | |
|
2 | vtxdusgradjvtx.e | |
|
3 | eqid | |
|
4 | 1 2 3 | vtxduhgr0edgnel | |
5 | ralnex | |
|
6 | 4 5 | bitr4di | |
7 | 6 | ralbidva | |
8 | ralcom | |
|
9 | ralnex2 | |
|
10 | 8 9 | bitri | |
11 | simpr | |
|
12 | 2 | eleq2i | |
13 | uhgredgn0 | |
|
14 | 12 13 | sylan2b | |
15 | eldifsn | |
|
16 | elpwi | |
|
17 | 1 | sseq2i | |
18 | ssn0rex | |
|
19 | 18 | ex | |
20 | 17 19 | sylbir | |
21 | 16 20 | syl | |
22 | 21 | imp | |
23 | 15 22 | sylbi | |
24 | 14 23 | syl | |
25 | 11 24 | jca | |
26 | 25 | ex | |
27 | 26 | eximdv | |
28 | n0 | |
|
29 | df-rex | |
|
30 | 27 28 29 | 3imtr4g | |
31 | 30 | con3d | |
32 | 10 31 | biimtrid | |
33 | nne | |
|
34 | 32 33 | imbitrdi | |
35 | 7 34 | sylbid | |