Metamath Proof Explorer


Theorem ulmval

Description: Express the predicate: The sequence of functions F converges uniformly to G on S . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Assertion ulmval SVFuSGnF:nSG:Sx+jnkjzSFkzGz<x

Proof

Step Hyp Ref Expression
1 ulmrel ReluS
2 1 brrelex12i FuSGFVGV
3 2 a1i SVFuSGFVGV
4 3simpa F:nSG:Sx+jnkjzSFkzGz<xF:nSG:S
5 fvex nV
6 fex F:nSnVFV
7 5 6 mpan2 F:nSFV
8 7 a1i SVF:nSFV
9 fex G:SSVGV
10 9 expcom SVG:SGV
11 8 10 anim12d SVF:nSG:SFVGV
12 4 11 syl5 SVF:nSG:Sx+jnkjzSFkzGz<xFVGV
13 12 rexlimdvw SVnF:nSG:Sx+jnkjzSFkzGz<xFVGV
14 df-ulm u=sVfy|nf:nsy:sx+jnkjzsfkzyz<x
15 oveq2 s=Ss=S
16 15 feq3d s=Sf:nsf:nS
17 feq2 s=Sy:sy:S
18 raleq s=Szsfkzyz<xzSfkzyz<x
19 18 rexralbidv s=Sjnkjzsfkzyz<xjnkjzSfkzyz<x
20 19 ralbidv s=Sx+jnkjzsfkzyz<xx+jnkjzSfkzyz<x
21 16 17 20 3anbi123d s=Sf:nsy:sx+jnkjzsfkzyz<xf:nSy:Sx+jnkjzSfkzyz<x
22 21 rexbidv s=Snf:nsy:sx+jnkjzsfkzyz<xnf:nSy:Sx+jnkjzSfkzyz<x
23 22 opabbidv s=Sfy|nf:nsy:sx+jnkjzsfkzyz<x=fy|nf:nSy:Sx+jnkjzSfkzyz<x
24 elex SVSV
25 simpr1 SVf:nSy:Sx+jnkjzSfkzyz<xf:nS
26 uzssz n
27 ovex SV
28 zex V
29 elpm2r SVVf:nSnfS𝑝𝑚
30 27 28 29 mpanl12 f:nSnfS𝑝𝑚
31 25 26 30 sylancl SVf:nSy:Sx+jnkjzSfkzyz<xfS𝑝𝑚
32 simpr2 SVf:nSy:Sx+jnkjzSfkzyz<xy:S
33 cnex V
34 simpl SVf:nSy:Sx+jnkjzSfkzyz<xSV
35 elmapg VSVySy:S
36 33 34 35 sylancr SVf:nSy:Sx+jnkjzSfkzyz<xySy:S
37 32 36 mpbird SVf:nSy:Sx+jnkjzSfkzyz<xyS
38 31 37 jca SVf:nSy:Sx+jnkjzSfkzyz<xfS𝑝𝑚yS
39 38 ex SVf:nSy:Sx+jnkjzSfkzyz<xfS𝑝𝑚yS
40 39 rexlimdvw SVnf:nSy:Sx+jnkjzSfkzyz<xfS𝑝𝑚yS
41 40 ssopab2dv SVfy|nf:nSy:Sx+jnkjzSfkzyz<xfy|fS𝑝𝑚yS
42 df-xp S𝑝𝑚×S=fy|fS𝑝𝑚yS
43 41 42 sseqtrrdi SVfy|nf:nSy:Sx+jnkjzSfkzyz<xS𝑝𝑚×S
44 ovex S𝑝𝑚V
45 44 27 xpex S𝑝𝑚×SV
46 45 ssex fy|nf:nSy:Sx+jnkjzSfkzyz<xS𝑝𝑚×Sfy|nf:nSy:Sx+jnkjzSfkzyz<xV
47 43 46 syl SVfy|nf:nSy:Sx+jnkjzSfkzyz<xV
48 14 23 24 47 fvmptd3 SVuS=fy|nf:nSy:Sx+jnkjzSfkzyz<x
49 48 breqd SVFuSGFfy|nf:nSy:Sx+jnkjzSfkzyz<xG
50 simpl f=Fy=Gf=F
51 50 feq1d f=Fy=Gf:nSF:nS
52 simpr f=Fy=Gy=G
53 52 feq1d f=Fy=Gy:SG:S
54 50 fveq1d f=Fy=Gfk=Fk
55 54 fveq1d f=Fy=Gfkz=Fkz
56 52 fveq1d f=Fy=Gyz=Gz
57 55 56 oveq12d f=Fy=Gfkzyz=FkzGz
58 57 fveq2d f=Fy=Gfkzyz=FkzGz
59 58 breq1d f=Fy=Gfkzyz<xFkzGz<x
60 59 ralbidv f=Fy=GzSfkzyz<xzSFkzGz<x
61 60 rexralbidv f=Fy=GjnkjzSfkzyz<xjnkjzSFkzGz<x
62 61 ralbidv f=Fy=Gx+jnkjzSfkzyz<xx+jnkjzSFkzGz<x
63 51 53 62 3anbi123d f=Fy=Gf:nSy:Sx+jnkjzSfkzyz<xF:nSG:Sx+jnkjzSFkzGz<x
64 63 rexbidv f=Fy=Gnf:nSy:Sx+jnkjzSfkzyz<xnF:nSG:Sx+jnkjzSFkzGz<x
65 eqid fy|nf:nSy:Sx+jnkjzSfkzyz<x=fy|nf:nSy:Sx+jnkjzSfkzyz<x
66 64 65 brabga FVGVFfy|nf:nSy:Sx+jnkjzSfkzyz<xGnF:nSG:Sx+jnkjzSFkzGz<x
67 49 66 sylan9bb SVFVGVFuSGnF:nSG:Sx+jnkjzSFkzGz<x
68 67 ex SVFVGVFuSGnF:nSG:Sx+jnkjzSFkzGz<x
69 3 13 68 pm5.21ndd SVFuSGnF:nSG:Sx+jnkjzSFkzGz<x