Metamath Proof Explorer


Theorem umgr2adedgspth

Description: In a multigraph, two adjacent edges with different endvertices form a simple path of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018) (Revised by AV, 29-Jan-2021)

Ref Expression
Hypotheses umgr2adedgwlk.e E=EdgG
umgr2adedgwlk.i I=iEdgG
umgr2adedgwlk.f F=⟨“JK”⟩
umgr2adedgwlk.p P=⟨“ABC”⟩
umgr2adedgwlk.g φGUMGraph
umgr2adedgwlk.a φABEBCE
umgr2adedgwlk.j φIJ=AB
umgr2adedgwlk.k φIK=BC
umgr2adedgspth.n φAC
Assertion umgr2adedgspth φFSPathsGP

Proof

Step Hyp Ref Expression
1 umgr2adedgwlk.e E=EdgG
2 umgr2adedgwlk.i I=iEdgG
3 umgr2adedgwlk.f F=⟨“JK”⟩
4 umgr2adedgwlk.p P=⟨“ABC”⟩
5 umgr2adedgwlk.g φGUMGraph
6 umgr2adedgwlk.a φABEBCE
7 umgr2adedgwlk.j φIJ=AB
8 umgr2adedgwlk.k φIK=BC
9 umgr2adedgspth.n φAC
10 3anass GUMGraphABEBCEGUMGraphABEBCE
11 5 6 10 sylanbrc φGUMGraphABEBCE
12 1 umgr2adedgwlklem GUMGraphABEBCEABBCAVtxGBVtxGCVtxG
13 11 12 syl φABBCAVtxGBVtxGCVtxG
14 13 simprd φAVtxGBVtxGCVtxG
15 13 simpld φABBC
16 ssid ABAB
17 16 7 sseqtrrid φABIJ
18 ssid BCBC
19 18 8 sseqtrrid φBCIK
20 17 19 jca φABIJBCIK
21 eqid VtxG=VtxG
22 fveq2 K=JIK=IJ
23 22 eqcoms J=KIK=IJ
24 23 eqeq1d J=KIK=BCIJ=BC
25 eqtr2 IJ=BCIJ=ABBC=AB
26 25 ex IJ=BCIJ=ABBC=AB
27 24 26 syl6bi J=KIK=BCIJ=ABBC=AB
28 27 com13 IJ=ABIK=BCJ=KBC=AB
29 7 8 28 sylc φJ=KBC=AB
30 eqcom BC=ABAB=BC
31 prcom BC=CB
32 31 eqeq2i AB=BCAB=CB
33 30 32 bitri BC=ABAB=CB
34 21 1 umgrpredgv GUMGraphABEAVtxGBVtxG
35 34 simpld GUMGraphABEAVtxG
36 35 ex GUMGraphABEAVtxG
37 21 1 umgrpredgv GUMGraphBCEBVtxGCVtxG
38 37 simprd GUMGraphBCECVtxG
39 38 ex GUMGraphBCECVtxG
40 36 39 anim12d GUMGraphABEBCEAVtxGCVtxG
41 5 6 40 sylc φAVtxGCVtxG
42 preqr1g AVtxGCVtxGAB=CBA=C
43 41 42 syl φAB=CBA=C
44 eqneqall A=CACJK
45 43 9 44 syl6ci φAB=CBJK
46 33 45 biimtrid φBC=ABJK
47 29 46 syld φJ=KJK
48 neqne ¬J=KJK
49 47 48 pm2.61d1 φJK
50 4 3 14 15 20 21 2 49 9 2spthd φFSPathsGP