Description: The other element of a pair is not the known element. (Contributed by Thierry Arnoux, 26-Aug-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | unidifsnne | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn | |
|
2 | nnfi | |
|
3 | 1 2 | ax-mp | |
4 | enfi | |
|
5 | 3 4 | mpbiri | |
6 | 5 | adantl | |
7 | diffi | |
|
8 | 6 7 | syl | |
9 | 8 | cardidd | |
10 | 9 | ensymd | |
11 | simpl | |
|
12 | dif1card | |
|
13 | 6 11 12 | syl2anc | |
14 | cardennn | |
|
15 | 1 14 | mpan2 | |
16 | df-2o | |
|
17 | 15 16 | eqtrdi | |
18 | 17 | adantl | |
19 | 13 18 | eqtr3d | |
20 | suc11reg | |
|
21 | 19 20 | sylib | |
22 | 10 21 | breqtrd | |
23 | en1 | |
|
24 | 22 23 | sylib | |
25 | simplll | |
|
26 | 25 | elexd | |
27 | simplr | |
|
28 | sneqbg | |
|
29 | 28 | biimpar | |
30 | 29 | ad4ant14 | |
31 | 27 30 | eqtr4d | |
32 | 31 | ineq2d | |
33 | disjdif | |
|
34 | inidm | |
|
35 | 32 33 34 | 3eqtr3g | |
36 | 35 | eqcomd | |
37 | snprc | |
|
38 | 36 37 | sylibr | |
39 | 26 38 | pm2.65da | |
40 | 39 | neqned | |
41 | simpr | |
|
42 | 41 | unieqd | |
43 | unisnv | |
|
44 | 42 43 | eqtrdi | |
45 | 40 44 | neeqtrrd | |
46 | 45 | necomd | |
47 | 24 46 | exlimddv | |