Metamath Proof Explorer


Theorem unidifsnne

Description: The other element of a pair is not the known element. (Contributed by Thierry Arnoux, 26-Aug-2017)

Ref Expression
Assertion unidifsnne X P P 2 𝑜 P X X

Proof

Step Hyp Ref Expression
1 2onn 2 𝑜 ω
2 nnfi 2 𝑜 ω 2 𝑜 Fin
3 1 2 ax-mp 2 𝑜 Fin
4 enfi P 2 𝑜 P Fin 2 𝑜 Fin
5 3 4 mpbiri P 2 𝑜 P Fin
6 5 adantl X P P 2 𝑜 P Fin
7 diffi P Fin P X Fin
8 6 7 syl X P P 2 𝑜 P X Fin
9 8 cardidd X P P 2 𝑜 card P X P X
10 9 ensymd X P P 2 𝑜 P X card P X
11 simpl X P P 2 𝑜 X P
12 dif1card P Fin X P card P = suc card P X
13 6 11 12 syl2anc X P P 2 𝑜 card P = suc card P X
14 cardennn P 2 𝑜 2 𝑜 ω card P = 2 𝑜
15 1 14 mpan2 P 2 𝑜 card P = 2 𝑜
16 df-2o 2 𝑜 = suc 1 𝑜
17 15 16 eqtrdi P 2 𝑜 card P = suc 1 𝑜
18 17 adantl X P P 2 𝑜 card P = suc 1 𝑜
19 13 18 eqtr3d X P P 2 𝑜 suc card P X = suc 1 𝑜
20 suc11reg suc card P X = suc 1 𝑜 card P X = 1 𝑜
21 19 20 sylib X P P 2 𝑜 card P X = 1 𝑜
22 10 21 breqtrd X P P 2 𝑜 P X 1 𝑜
23 en1 P X 1 𝑜 x P X = x
24 22 23 sylib X P P 2 𝑜 x P X = x
25 simplll X P P 2 𝑜 P X = x X = x X P
26 25 elexd X P P 2 𝑜 P X = x X = x X V
27 simplr X P P 2 𝑜 P X = x X = x P X = x
28 sneqbg X P X = x X = x
29 28 biimpar X P X = x X = x
30 29 ad4ant14 X P P 2 𝑜 P X = x X = x X = x
31 27 30 eqtr4d X P P 2 𝑜 P X = x X = x P X = X
32 31 ineq2d X P P 2 𝑜 P X = x X = x X P X = X X
33 disjdif X P X =
34 inidm X X = X
35 32 33 34 3eqtr3g X P P 2 𝑜 P X = x X = x = X
36 35 eqcomd X P P 2 𝑜 P X = x X = x X =
37 snprc ¬ X V X =
38 36 37 sylibr X P P 2 𝑜 P X = x X = x ¬ X V
39 26 38 pm2.65da X P P 2 𝑜 P X = x ¬ X = x
40 39 neqned X P P 2 𝑜 P X = x X x
41 simpr X P P 2 𝑜 P X = x P X = x
42 41 unieqd X P P 2 𝑜 P X = x P X = x
43 vex x V
44 43 unisn x = x
45 42 44 eqtrdi X P P 2 𝑜 P X = x P X = x
46 40 45 neeqtrrd X P P 2 𝑜 P X = x X P X
47 46 necomd X P P 2 𝑜 P X = x P X X
48 24 47 exlimddv X P P 2 𝑜 P X X