| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2onn |  | 
						
							| 2 |  | nnfi |  | 
						
							| 3 | 1 2 | ax-mp |  | 
						
							| 4 |  | enfi |  | 
						
							| 5 | 3 4 | mpbiri |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | diffi |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 | 8 | cardidd |  | 
						
							| 10 | 9 | ensymd |  | 
						
							| 11 |  | simpl |  | 
						
							| 12 |  | dif1card |  | 
						
							| 13 | 6 11 12 | syl2anc |  | 
						
							| 14 |  | cardennn |  | 
						
							| 15 | 1 14 | mpan2 |  | 
						
							| 16 |  | df-2o |  | 
						
							| 17 | 15 16 | eqtrdi |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 | 13 18 | eqtr3d |  | 
						
							| 20 |  | suc11reg |  | 
						
							| 21 | 19 20 | sylib |  | 
						
							| 22 | 10 21 | breqtrd |  | 
						
							| 23 |  | en1 |  | 
						
							| 24 | 22 23 | sylib |  | 
						
							| 25 |  | simplll |  | 
						
							| 26 | 25 | elexd |  | 
						
							| 27 |  | simplr |  | 
						
							| 28 |  | sneqbg |  | 
						
							| 29 | 28 | biimpar |  | 
						
							| 30 | 29 | ad4ant14 |  | 
						
							| 31 | 27 30 | eqtr4d |  | 
						
							| 32 | 31 | ineq2d |  | 
						
							| 33 |  | disjdif |  | 
						
							| 34 |  | inidm |  | 
						
							| 35 | 32 33 34 | 3eqtr3g |  | 
						
							| 36 | 35 | eqcomd |  | 
						
							| 37 |  | snprc |  | 
						
							| 38 | 36 37 | sylibr |  | 
						
							| 39 | 26 38 | pm2.65da |  | 
						
							| 40 | 39 | neqned |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 | 41 | unieqd |  | 
						
							| 43 |  | unisnv |  | 
						
							| 44 | 42 43 | eqtrdi |  | 
						
							| 45 | 40 44 | neeqtrrd |  | 
						
							| 46 | 45 | necomd |  | 
						
							| 47 | 24 46 | exlimddv |  |