Metamath Proof Explorer


Theorem unidifsnne

Description: The other element of a pair is not the known element. (Contributed by Thierry Arnoux, 26-Aug-2017)

Ref Expression
Assertion unidifsnne XPP2𝑜PXX

Proof

Step Hyp Ref Expression
1 2onn 2𝑜ω
2 nnfi 2𝑜ω2𝑜Fin
3 1 2 ax-mp 2𝑜Fin
4 enfi P2𝑜PFin2𝑜Fin
5 3 4 mpbiri P2𝑜PFin
6 5 adantl XPP2𝑜PFin
7 diffi PFinPXFin
8 6 7 syl XPP2𝑜PXFin
9 8 cardidd XPP2𝑜cardPXPX
10 9 ensymd XPP2𝑜PXcardPX
11 simpl XPP2𝑜XP
12 dif1card PFinXPcardP=succardPX
13 6 11 12 syl2anc XPP2𝑜cardP=succardPX
14 cardennn P2𝑜2𝑜ωcardP=2𝑜
15 1 14 mpan2 P2𝑜cardP=2𝑜
16 df-2o 2𝑜=suc1𝑜
17 15 16 eqtrdi P2𝑜cardP=suc1𝑜
18 17 adantl XPP2𝑜cardP=suc1𝑜
19 13 18 eqtr3d XPP2𝑜succardPX=suc1𝑜
20 suc11reg succardPX=suc1𝑜cardPX=1𝑜
21 19 20 sylib XPP2𝑜cardPX=1𝑜
22 10 21 breqtrd XPP2𝑜PX1𝑜
23 en1 PX1𝑜xPX=x
24 22 23 sylib XPP2𝑜xPX=x
25 simplll XPP2𝑜PX=xX=xXP
26 25 elexd XPP2𝑜PX=xX=xXV
27 simplr XPP2𝑜PX=xX=xPX=x
28 sneqbg XPX=xX=x
29 28 biimpar XPX=xX=x
30 29 ad4ant14 XPP2𝑜PX=xX=xX=x
31 27 30 eqtr4d XPP2𝑜PX=xX=xPX=X
32 31 ineq2d XPP2𝑜PX=xX=xXPX=XX
33 disjdif XPX=
34 inidm XX=X
35 32 33 34 3eqtr3g XPP2𝑜PX=xX=x=X
36 35 eqcomd XPP2𝑜PX=xX=xX=
37 snprc ¬XVX=
38 36 37 sylibr XPP2𝑜PX=xX=x¬XV
39 26 38 pm2.65da XPP2𝑜PX=x¬X=x
40 39 neqned XPP2𝑜PX=xXx
41 simpr XPP2𝑜PX=xPX=x
42 41 unieqd XPP2𝑜PX=xPX=x
43 unisnv x=x
44 42 43 eqtrdi XPP2𝑜PX=xPX=x
45 40 44 neeqtrrd XPP2𝑜PX=xXPX
46 45 necomd XPP2𝑜PX=xPXX
47 24 46 exlimddv XPP2𝑜PXX