Description: Necessary conditions for a quotient to be in the closed unit interval. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | unitdivcld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunitrn | |
|
2 | 1 | 3ad2ant1 | |
3 | elunitrn | |
|
4 | 3 | 3ad2ant2 | |
5 | simp3 | |
|
6 | 2 4 5 | redivcld | |
7 | 6 | adantr | |
8 | elunitge0 | |
|
9 | 8 | 3ad2ant1 | |
10 | elunitge0 | |
|
11 | 10 | adantr | |
12 | 0re | |
|
13 | ltlen | |
|
14 | 12 3 13 | sylancr | |
15 | 14 | biimpar | |
16 | 15 | 3impb | |
17 | 16 | 3com23 | |
18 | 11 17 | mpd3an3 | |
19 | 18 | 3adant1 | |
20 | divge0 | |
|
21 | 2 9 4 19 20 | syl22anc | |
22 | 21 | adantr | |
23 | 1red | |
|
24 | ledivmul | |
|
25 | 2 23 4 19 24 | syl112anc | |
26 | ax-1rid | |
|
27 | 26 | breq2d | |
28 | 4 27 | syl | |
29 | 25 28 | bitr2d | |
30 | 29 | biimpa | |
31 | 7 22 30 | 3jca | |
32 | 31 | ex | |
33 | simp3 | |
|
34 | 33 29 | imbitrrid | |
35 | 32 34 | impbid | |
36 | elicc01 | |
|
37 | 35 36 | bitr4di | |