Metamath Proof Explorer


Theorem unitdivcld

Description: Necessary conditions for a quotient to be in the closed unit interval. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016)

Ref Expression
Assertion unitdivcld A01B01B0ABAB01

Proof

Step Hyp Ref Expression
1 elunitrn A01A
2 1 3ad2ant1 A01B01B0A
3 elunitrn B01B
4 3 3ad2ant2 A01B01B0B
5 simp3 A01B01B0B0
6 2 4 5 redivcld A01B01B0AB
7 6 adantr A01B01B0ABAB
8 elunitge0 A010A
9 8 3ad2ant1 A01B01B00A
10 elunitge0 B010B
11 10 adantr B01B00B
12 0re 0
13 ltlen 0B0<B0BB0
14 12 3 13 sylancr B010<B0BB0
15 14 biimpar B010BB00<B
16 15 3impb B010BB00<B
17 16 3com23 B01B00B0<B
18 11 17 mpd3an3 B01B00<B
19 18 3adant1 A01B01B00<B
20 divge0 A0AB0<B0AB
21 2 9 4 19 20 syl22anc A01B01B00AB
22 21 adantr A01B01B0AB0AB
23 1red A01B01B01
24 ledivmul A1B0<BAB1AB1
25 2 23 4 19 24 syl112anc A01B01B0AB1AB1
26 ax-1rid BB1=B
27 26 breq2d BAB1AB
28 4 27 syl A01B01B0AB1AB
29 25 28 bitr2d A01B01B0ABAB1
30 29 biimpa A01B01B0ABAB1
31 7 22 30 3jca A01B01B0ABAB0ABAB1
32 31 ex A01B01B0ABAB0ABAB1
33 simp3 AB0ABAB1AB1
34 33 29 imbitrrid A01B01B0AB0ABAB1AB
35 32 34 impbid A01B01B0ABAB0ABAB1
36 elicc01 AB01AB0ABAB1
37 35 36 bitr4di A01B01B0ABAB01