Metamath Proof Explorer


Theorem ushrisomgr

Description: A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022)

Ref Expression
Hypotheses ushrisomgr.v V=VtxG
ushrisomgr.e E=EdgG
ushrisomgr.s H=VIE
Assertion ushrisomgr GUSHGraphGIsomGrH

Proof

Step Hyp Ref Expression
1 ushrisomgr.v V=VtxG
2 ushrisomgr.e E=EdgG
3 ushrisomgr.s H=VIE
4 1 fvexi VV
5 4 a1i GUSHGraphVV
6 5 resiexd GUSHGraphIVV
7 f1oi IV:V1-1 ontoV
8 7 a1i GUSHGraphIV:V1-1 ontoV
9 3 fveq2i VtxH=VtxVIE
10 2 fvexi EV
11 id EVEV
12 11 resiexd EVIEV
13 10 12 ax-mp IEV
14 4 13 pm3.2i VVIEV
15 opvtxfv VVIEVVtxVIE=V
16 14 15 mp1i GUSHGraphVtxVIE=V
17 9 16 eqtrid GUSHGraphVtxH=V
18 17 f1oeq3d GUSHGraphIV:V1-1 ontoVtxHIV:V1-1 ontoV
19 8 18 mpbird GUSHGraphIV:V1-1 ontoVtxH
20 fvexd GUSHGraphiEdgGV
21 eqid iEdgG=iEdgG
22 1 21 ushgrf GUSHGraphiEdgG:domiEdgG1-1𝒫V
23 f1f1orn iEdgG:domiEdgG1-1𝒫ViEdgG:domiEdgG1-1 ontoraniEdgG
24 22 23 syl GUSHGraphiEdgG:domiEdgG1-1 ontoraniEdgG
25 3 fveq2i iEdgH=iEdgVIE
26 10 a1i GUSHGraphEV
27 26 resiexd GUSHGraphIEV
28 opiedgfv VVIEViEdgVIE=IE
29 4 27 28 sylancr GUSHGraphiEdgVIE=IE
30 25 29 eqtrid GUSHGraphiEdgH=IE
31 30 dmeqd GUSHGraphdomiEdgH=domIE
32 dmresi domIE=E
33 2 a1i GUSHGraphE=EdgG
34 edgval EdgG=raniEdgG
35 33 34 eqtrdi GUSHGraphE=raniEdgG
36 32 35 eqtrid GUSHGraphdomIE=raniEdgG
37 31 36 eqtrd GUSHGraphdomiEdgH=raniEdgG
38 37 f1oeq3d GUSHGraphiEdgG:domiEdgG1-1 ontodomiEdgHiEdgG:domiEdgG1-1 ontoraniEdgG
39 24 38 mpbird GUSHGraphiEdgG:domiEdgG1-1 ontodomiEdgH
40 ushgruhgr GUSHGraphGUHGraph
41 1 21 uhgrss GUHGraphidomiEdgGiEdgGiV
42 40 41 sylan GUSHGraphidomiEdgGiEdgGiV
43 resiima iEdgGiVIViEdgGi=iEdgGi
44 42 43 syl GUSHGraphidomiEdgGIViEdgGi=iEdgGi
45 f1f iEdgG:domiEdgG1-1𝒫ViEdgG:domiEdgG𝒫V
46 22 45 syl GUSHGraphiEdgG:domiEdgG𝒫V
47 46 ffund GUSHGraphFuniEdgG
48 fvelrn FuniEdgGidomiEdgGiEdgGiraniEdgG
49 47 48 sylan GUSHGraphidomiEdgGiEdgGiraniEdgG
50 2 34 eqtri E=raniEdgG
51 49 50 eleqtrrdi GUSHGraphidomiEdgGiEdgGiE
52 fvresi iEdgGiEIEiEdgGi=iEdgGi
53 51 52 syl GUSHGraphidomiEdgGIEiEdgGi=iEdgGi
54 10 a1i GUSHGraphidomiEdgGEV
55 54 resiexd GUSHGraphidomiEdgGIEV
56 4 55 28 sylancr GUSHGraphidomiEdgGiEdgVIE=IE
57 25 56 eqtr2id GUSHGraphidomiEdgGIE=iEdgH
58 57 fveq1d GUSHGraphidomiEdgGIEiEdgGi=iEdgHiEdgGi
59 44 53 58 3eqtr2d GUSHGraphidomiEdgGIViEdgGi=iEdgHiEdgGi
60 59 ralrimiva GUSHGraphidomiEdgGIViEdgGi=iEdgHiEdgGi
61 39 60 jca GUSHGraphiEdgG:domiEdgG1-1 ontodomiEdgHidomiEdgGIViEdgGi=iEdgHiEdgGi
62 f1oeq1 g=iEdgGg:domiEdgG1-1 ontodomiEdgHiEdgG:domiEdgG1-1 ontodomiEdgH
63 fveq1 g=iEdgGgi=iEdgGi
64 63 fveq2d g=iEdgGiEdgHgi=iEdgHiEdgGi
65 64 eqeq2d g=iEdgGIViEdgGi=iEdgHgiIViEdgGi=iEdgHiEdgGi
66 65 ralbidv g=iEdgGidomiEdgGIViEdgGi=iEdgHgiidomiEdgGIViEdgGi=iEdgHiEdgGi
67 62 66 anbi12d g=iEdgGg:domiEdgG1-1 ontodomiEdgHidomiEdgGIViEdgGi=iEdgHgiiEdgG:domiEdgG1-1 ontodomiEdgHidomiEdgGIViEdgGi=iEdgHiEdgGi
68 20 61 67 spcedv GUSHGraphgg:domiEdgG1-1 ontodomiEdgHidomiEdgGIViEdgGi=iEdgHgi
69 19 68 jca GUSHGraphIV:V1-1 ontoVtxHgg:domiEdgG1-1 ontodomiEdgHidomiEdgGIViEdgGi=iEdgHgi
70 f1oeq1 f=IVf:V1-1 ontoVtxHIV:V1-1 ontoVtxH
71 imaeq1 f=IVfiEdgGi=IViEdgGi
72 71 eqeq1d f=IVfiEdgGi=iEdgHgiIViEdgGi=iEdgHgi
73 72 ralbidv f=IVidomiEdgGfiEdgGi=iEdgHgiidomiEdgGIViEdgGi=iEdgHgi
74 73 anbi2d f=IVg:domiEdgG1-1 ontodomiEdgHidomiEdgGfiEdgGi=iEdgHgig:domiEdgG1-1 ontodomiEdgHidomiEdgGIViEdgGi=iEdgHgi
75 74 exbidv f=IVgg:domiEdgG1-1 ontodomiEdgHidomiEdgGfiEdgGi=iEdgHgigg:domiEdgG1-1 ontodomiEdgHidomiEdgGIViEdgGi=iEdgHgi
76 70 75 anbi12d f=IVf:V1-1 ontoVtxHgg:domiEdgG1-1 ontodomiEdgHidomiEdgGfiEdgGi=iEdgHgiIV:V1-1 ontoVtxHgg:domiEdgG1-1 ontodomiEdgHidomiEdgGIViEdgGi=iEdgHgi
77 6 69 76 spcedv GUSHGraphff:V1-1 ontoVtxHgg:domiEdgG1-1 ontodomiEdgHidomiEdgGfiEdgGi=iEdgHgi
78 opex VIEV
79 3 78 eqeltri HV
80 eqid VtxH=VtxH
81 eqid iEdgH=iEdgH
82 1 80 21 81 isomgr GUSHGraphHVGIsomGrHff:V1-1 ontoVtxHgg:domiEdgG1-1 ontodomiEdgHidomiEdgGfiEdgGi=iEdgHgi
83 79 82 mpan2 GUSHGraphGIsomGrHff:V1-1 ontoVtxHgg:domiEdgG1-1 ontodomiEdgHidomiEdgGfiEdgGi=iEdgHgi
84 77 83 mpbird GUSHGraphGIsomGrH