Metamath Proof Explorer


Theorem ushrisomgr

Description: A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022)

Ref Expression
Hypotheses ushrisomgr.v V = Vtx G
ushrisomgr.e E = Edg G
ushrisomgr.s H = V I E
Assertion ushrisomgr G USHGraph G IsomGr H

Proof

Step Hyp Ref Expression
1 ushrisomgr.v V = Vtx G
2 ushrisomgr.e E = Edg G
3 ushrisomgr.s H = V I E
4 1 fvexi V V
5 4 a1i G USHGraph V V
6 5 resiexd G USHGraph I V V
7 f1oi I V : V 1-1 onto V
8 7 a1i G USHGraph I V : V 1-1 onto V
9 3 fveq2i Vtx H = Vtx V I E
10 2 fvexi E V
11 id E V E V
12 11 resiexd E V I E V
13 10 12 ax-mp I E V
14 4 13 pm3.2i V V I E V
15 opvtxfv V V I E V Vtx V I E = V
16 14 15 mp1i G USHGraph Vtx V I E = V
17 9 16 syl5eq G USHGraph Vtx H = V
18 17 f1oeq3d G USHGraph I V : V 1-1 onto Vtx H I V : V 1-1 onto V
19 8 18 mpbird G USHGraph I V : V 1-1 onto Vtx H
20 fvexd G USHGraph iEdg G V
21 eqid iEdg G = iEdg G
22 1 21 ushgrf G USHGraph iEdg G : dom iEdg G 1-1 𝒫 V
23 f1f1orn iEdg G : dom iEdg G 1-1 𝒫 V iEdg G : dom iEdg G 1-1 onto ran iEdg G
24 22 23 syl G USHGraph iEdg G : dom iEdg G 1-1 onto ran iEdg G
25 3 fveq2i iEdg H = iEdg V I E
26 10 a1i G USHGraph E V
27 26 resiexd G USHGraph I E V
28 opiedgfv V V I E V iEdg V I E = I E
29 4 27 28 sylancr G USHGraph iEdg V I E = I E
30 25 29 syl5eq G USHGraph iEdg H = I E
31 30 dmeqd G USHGraph dom iEdg H = dom I E
32 dmresi dom I E = E
33 2 a1i G USHGraph E = Edg G
34 edgval Edg G = ran iEdg G
35 33 34 syl6eq G USHGraph E = ran iEdg G
36 32 35 syl5eq G USHGraph dom I E = ran iEdg G
37 31 36 eqtrd G USHGraph dom iEdg H = ran iEdg G
38 37 f1oeq3d G USHGraph iEdg G : dom iEdg G 1-1 onto dom iEdg H iEdg G : dom iEdg G 1-1 onto ran iEdg G
39 24 38 mpbird G USHGraph iEdg G : dom iEdg G 1-1 onto dom iEdg H
40 ushgruhgr G USHGraph G UHGraph
41 1 21 uhgrss G UHGraph i dom iEdg G iEdg G i V
42 40 41 sylan G USHGraph i dom iEdg G iEdg G i V
43 resiima iEdg G i V I V iEdg G i = iEdg G i
44 42 43 syl G USHGraph i dom iEdg G I V iEdg G i = iEdg G i
45 f1f iEdg G : dom iEdg G 1-1 𝒫 V iEdg G : dom iEdg G 𝒫 V
46 22 45 syl G USHGraph iEdg G : dom iEdg G 𝒫 V
47 46 ffund G USHGraph Fun iEdg G
48 fvelrn Fun iEdg G i dom iEdg G iEdg G i ran iEdg G
49 47 48 sylan G USHGraph i dom iEdg G iEdg G i ran iEdg G
50 2 34 eqtri E = ran iEdg G
51 49 50 eleqtrrdi G USHGraph i dom iEdg G iEdg G i E
52 fvresi iEdg G i E I E iEdg G i = iEdg G i
53 51 52 syl G USHGraph i dom iEdg G I E iEdg G i = iEdg G i
54 10 a1i G USHGraph i dom iEdg G E V
55 54 resiexd G USHGraph i dom iEdg G I E V
56 4 55 28 sylancr G USHGraph i dom iEdg G iEdg V I E = I E
57 25 56 syl5req G USHGraph i dom iEdg G I E = iEdg H
58 57 fveq1d G USHGraph i dom iEdg G I E iEdg G i = iEdg H iEdg G i
59 44 53 58 3eqtr2d G USHGraph i dom iEdg G I V iEdg G i = iEdg H iEdg G i
60 59 ralrimiva G USHGraph i dom iEdg G I V iEdg G i = iEdg H iEdg G i
61 39 60 jca G USHGraph iEdg G : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H iEdg G i
62 f1oeq1 g = iEdg G g : dom iEdg G 1-1 onto dom iEdg H iEdg G : dom iEdg G 1-1 onto dom iEdg H
63 fveq1 g = iEdg G g i = iEdg G i
64 63 fveq2d g = iEdg G iEdg H g i = iEdg H iEdg G i
65 64 eqeq2d g = iEdg G I V iEdg G i = iEdg H g i I V iEdg G i = iEdg H iEdg G i
66 65 ralbidv g = iEdg G i dom iEdg G I V iEdg G i = iEdg H g i i dom iEdg G I V iEdg G i = iEdg H iEdg G i
67 62 66 anbi12d g = iEdg G g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i iEdg G : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H iEdg G i
68 20 61 67 spcedv G USHGraph g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i
69 19 68 jca G USHGraph I V : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i
70 f1oeq1 f = I V f : V 1-1 onto Vtx H I V : V 1-1 onto Vtx H
71 imaeq1 f = I V f iEdg G i = I V iEdg G i
72 71 eqeq1d f = I V f iEdg G i = iEdg H g i I V iEdg G i = iEdg H g i
73 72 ralbidv f = I V i dom iEdg G f iEdg G i = iEdg H g i i dom iEdg G I V iEdg G i = iEdg H g i
74 73 anbi2d f = I V g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i
75 74 exbidv f = I V g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i
76 70 75 anbi12d f = I V f : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i I V : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G I V iEdg G i = iEdg H g i
77 6 69 76 spcedv G USHGraph f f : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i
78 opex V I E V
79 3 78 eqeltri H V
80 eqid Vtx H = Vtx H
81 eqid iEdg H = iEdg H
82 1 80 21 81 isomgr G USHGraph H V G IsomGr H f f : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i
83 79 82 mpan2 G USHGraph G IsomGr H f f : V 1-1 onto Vtx H g g : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G f iEdg G i = iEdg H g i
84 77 83 mpbird G USHGraph G IsomGr H