Metamath Proof Explorer


Theorem ustuqtop1

Description: Lemma for ustuqtop , similar to ssnei2 . (Contributed by Thierry Arnoux, 11-Jan-2018)

Ref Expression
Hypothesis utopustuq.1 N=pXranvUvp
Assertion ustuqtop1 UUnifOnXpXabbXaNpbNp

Proof

Step Hyp Ref Expression
1 utopustuq.1 N=pXranvUvp
2 simpl1l UUnifOnXpXabbXaNpwUa=wpUUnifOnX
3 2 3anassrs UUnifOnXpXabbXaNpwUa=wpUUnifOnX
4 simplr UUnifOnXpXabbXaNpwUa=wpwU
5 ustssxp UUnifOnXwUwX×X
6 3 4 5 syl2anc UUnifOnXpXabbXaNpwUa=wpwX×X
7 simpl1r UUnifOnXpXabbXaNpwUa=wppX
8 7 3anassrs UUnifOnXpXabbXaNpwUa=wppX
9 8 snssd UUnifOnXpXabbXaNpwUa=wppX
10 simpl3 UUnifOnXpXabbXaNpwUa=wpbX
11 10 3anassrs UUnifOnXpXabbXaNpwUa=wpbX
12 xpss12 pXbXp×bX×X
13 9 11 12 syl2anc UUnifOnXpXabbXaNpwUa=wpp×bX×X
14 6 13 unssd UUnifOnXpXabbXaNpwUa=wpwp×bX×X
15 ssun1 wwp×b
16 15 a1i UUnifOnXpXabbXaNpwUa=wpwwp×b
17 ustssel UUnifOnXwUwp×bX×Xwwp×bwp×bU
18 17 imp UUnifOnXwUwp×bX×Xwwp×bwp×bU
19 3 4 14 16 18 syl31anc UUnifOnXpXabbXaNpwUa=wpwp×bU
20 simpl2 UUnifOnXpXabbXaNpwUa=wpab
21 20 3anassrs UUnifOnXpXabbXaNpwUa=wpab
22 ssequn1 abab=b
23 22 biimpi abab=b
24 id a=wpa=wp
25 inidm pp=p
26 vex pV
27 26 snnz p
28 25 27 eqnetri pp
29 xpima2 ppp×bp=b
30 28 29 mp1i a=wpp×bp=b
31 30 eqcomd a=wpb=p×bp
32 24 31 uneq12d a=wpab=wpp×bp
33 imaundir wp×bp=wpp×bp
34 32 33 eqtr4di a=wpab=wp×bp
35 23 34 sylan9req aba=wpb=wp×bp
36 21 35 sylancom UUnifOnXpXabbXaNpwUa=wpb=wp×bp
37 imaeq1 u=wp×bup=wp×bp
38 37 rspceeqv wp×bUb=wp×bpuUb=up
39 19 36 38 syl2anc UUnifOnXpXabbXaNpwUa=wpuUb=up
40 1 ustuqtoplem UUnifOnXpXaVaNpwUa=wp
41 40 elvd UUnifOnXpXaNpwUa=wp
42 41 biimpa UUnifOnXpXaNpwUa=wp
43 42 3ad2antl1 UUnifOnXpXabbXaNpwUa=wp
44 39 43 r19.29a UUnifOnXpXabbXaNpuUb=up
45 1 ustuqtoplem UUnifOnXpXbVbNpuUb=up
46 45 elvd UUnifOnXpXbNpuUb=up
47 46 3ad2ant1 UUnifOnXpXabbXbNpuUb=up
48 47 adantr UUnifOnXpXabbXaNpbNpuUb=up
49 44 48 mpbird UUnifOnXpXabbXaNpbNp