| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  | 
						
							| 2 |  | simplr |  | 
						
							| 3 |  | oveq1 |  | 
						
							| 4 | 3 | oveq2d |  | 
						
							| 5 | 4 | eleq1d |  | 
						
							| 6 | 5 | cbvralvw |  | 
						
							| 7 |  | oveq1 |  | 
						
							| 8 | 7 | eleq1d |  | 
						
							| 9 | 8 | ralbidv |  | 
						
							| 10 | 6 9 | bitrid |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 | 11 | oveq2d |  | 
						
							| 13 | 12 | eleq1d |  | 
						
							| 14 | 13 | ralbidv |  | 
						
							| 15 | 10 14 | cbvrex2vw |  | 
						
							| 16 |  | oveq1 |  | 
						
							| 17 | 16 | oveq2d |  | 
						
							| 18 | 17 | raleqdv |  | 
						
							| 19 | 18 | 2rexbidv |  | 
						
							| 20 | 15 19 | bitrid |  | 
						
							| 21 | 20 | notbid |  | 
						
							| 22 | 21 | cbvrabv |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 |  | sneq |  | 
						
							| 25 | 24 | imaeq2d |  | 
						
							| 26 | 25 | eleq2d |  | 
						
							| 27 | 26 | ralbidv |  | 
						
							| 28 | 27 | 2rexbidv |  | 
						
							| 29 | 28 | ralbidv |  | 
						
							| 30 | 29 | cbvrexvw |  | 
						
							| 31 | 23 30 | sylnib |  | 
						
							| 32 |  | rabn0 |  | 
						
							| 33 |  | rexnal |  | 
						
							| 34 | 32 33 | bitri |  | 
						
							| 35 | 34 | ralbii |  | 
						
							| 36 |  | ralnex |  | 
						
							| 37 | 35 36 | bitri |  | 
						
							| 38 | 31 37 | sylibr |  | 
						
							| 39 | 1 2 22 38 | vdwnnlem3 |  | 
						
							| 40 |  | iman |  | 
						
							| 41 | 39 40 | mpbir |  |